
Persistence Framework
Overview

Documents the persistence framework.

Details

Persistence is handled by the JPA framework with a default Hibernate implementation.

The refset/translation tool includes a JPA-enabled implementation of the   objects that use annotations to define the connections, Domain Model
cascading, and other relationships between the various objects.  For persistence interdependence, we have defined three categories of objects

Terminology 
Application
Workflow

Terminology objects represent data elements from the RF2 world (e.g. Concept, Description, Relationship, etc).  Application objects represent those 
things that exist within the scope of this tool (e.g. Refset, Translation,  ReleaseInfo, ReleaseArtifact, etc).  Worfklow objects represent states along the 
trajectory of editing and reference objects from the Application and Terminology worlds (mostly TrackingRecord).

Some principles:

Eager fetching is rarely used
Cascading is also rarely used, only for when objects are very tightly bound (like Translations and DescriptionTypes).
Objects are generally doubly-linked (e.g. Refset accesses ConceptRefsetMembers which each know their Refset).
The mapped superclass join strategy is always used - there are no cases of multiple object types within the same table.

Configuration

The JPA configuration is in the standard config.properties file. 

Property Default Value  

hibernate.dialect org.hibernate.dialect.
MySQLDialect

The default is MySQL though simply changing this should support other hibernate-
supported environments.

javax.persistence.jdbc.driver com.mysql.jdbc.Driver JDBC driver, this requires the MySQL connector to be in the classpath

javax.persistence.jdbc.url jdbc:mysql://127.0.0.1:
3306/refset

Default connection URL to a "refset" database

javax.persistence.jdbc.user n/a MySQL user

javax.persistence.jdbc.
password

n/a MySQL user's password

hibernate.show_sql false Useful debug setting, change to "true" to see all queries executed by JPA layer.

hibernate.format_sql true Formats SQL when showing queries

hibernate.use_sql_comments true Add comments when showing SQL to explain what is happening.

hibernate.jdbc.batch_size 500 Batch size for bulk operations.

hibernate.jdbc.
default_batch_fetch_size

500 Batch size for fetch operations.

 

Annotations Used

Annotation Explanation

@Column Define columns, column names, and specifications about size and nullability.

@ElementCollection, @CollectionTable Used to define collections of non JPA objects (like a set of String).

@Entity Used to define JPA-tracked objects.

@Enumerated Used to indicate fields that have enumerated values.

https://confluence.ihtsdotools.org/display/REFSET/Domain+Model


@id @GeneratedValue Used to managed identifier fields and ID strategy.

@ManyToOne, @OneToOne, 
@OneToMany

Used to define object relationships between different @Entity annotated classes.

@MappedSuperclass Used for abstract superclasses to indicate their fields should be included in persistence of concrete 
subclasses.

@OrderColumn Used to enforce list order for tracking record authors/reviewers

@Table Used to indicate table names for objects. Default underscore-based naming convention is used.

@Temporal Used for date fields.

@Transient Used to avoid persistence of fields, these are typically used for DTO fields as we reuse the objects for 
data transfer.

@UniqueConstraint Used to index columns that would otherwise not have indexes. Not actually used for uniqueness.

 

References/Links

http://en.wikipedia.org/wiki/Java_Persistence_API

http://en.wikipedia.org/wiki/Java_Persistence_API

	Persistence Framework

