
Building and Deploying in Eclipse
Overview

Documents setting up code, config, and data in a development environment using Eclipse.

Prerequisites

Git client
Java 7 installed
Mysql 5.5 or 5.6 installed
Maven 3.2.+ installed
Tomcat 7 installed and configured
Eclipse

Use version 4.4 (Luna) - J2EE edition
m2e (the maven integration for eclipse - download from the market place)

m2e-egit connector
eGit - http://eclipse.github.com/
Jautodoc - import configuration from Code and XML Formatting in Eclipse
ObjectAid UML Diagram tool for class hierarchy visualization. Installed via Help->Install New Software. Instructions athttp://www.
objectaid.net/installation
FindBugs (static code analysis)
AngularJS - see https://github.com/angelozerr/angularjs-eclipse/wiki/Getting-Started

As this project is organized around Maven and may make use of resources on IHTSDO Nexus, properly configure your .Settings.xml Page

Details

Step 1 - Create directories

 Setup for Windows

Create a directory to hold your data files (e.g. c:/mapping/data)
Create a directory to hold your config files (e.g. c:/mapping/config)
Create a directory to hold the code (e.g. c:/workspace/OTF-Mapping-Service)
Make sure the "mvn" executable for your local maven installation is in the path

On Windows this means adding to the PATH variable so that it runs in a "cmd" shell without fully qualified path.

 Setup for Unix/Linux/Mac

Create a directory to hold your data files (e.g. ~/data)
Create a directory to hold your config files (e.g. ~/config)
Create a directory to hold the code (e.g. ~/code)
Make sure the "mvn" executable for your local maven installation is in the path

Step 2 - Clone repositories

Clone the to the directory created to hold the code.Github repository

Step 3 - Build project

Build all project modules with "mvn clean install" at the top level - either through Eclipse or via the command line.

NOTE: this uses the standard "dev-windows" configuration. To use a different configuration artifact pass the following three parameters:
-Dconfig.groupId=...
-Dconfig.artifactId=...
-Dconfig.version=...

NOTE: the specified configuration artifact must either have been built locally or be an a repository accessible based on the settings.xml file
NOTE: index viewer data is similarly configured. Stock config files reference release versions of index viewer data hosted on https://nexus3.
ihtsdotools.org. Consider adding this as an extra repository in your settings.xml
For most dev deployments, the default build is fine because the only setting really used for the rest/webapp packages is the "base.url" which
by default is set to http://localhost:8080/mapping-rest.
For a UAT or production deployment, you would want to use a different setting. For example, see , the prod deployment Deploy Instructions
instructions.

Step 4 - Setup Configuration

Choose a "dev-windows", "uat", or "prod" config project target and unzip it into the directory created to hold your config files.

http://eclipse.github.com/
http://wiki.mappingprojects.com/confluence/display/IO/Code+and+XML+Formatting+in+Eclipse
http://www.objectaid.com/installation
http://www.objectaid.com/installation
https://github.com/angelozerr/angularjs-eclipse/wiki/Getting-Started
https://confluence.ihtsdotools.org/display/MT/Settings.xml+Page
https://github.com/IHTSDO/OTF-Mapping-Service.git
http://localhost:8080/mapping-rest.
https://confluence.ihtsdotools.org/display/MT/Deploy+Instructions

config/dev-windows/target/mapping-config-dev-windows.*.zip
config/prod/target/mapping-config-prod.*.zip
config/uat/target/mapping-config-uat.*.zip

Step 5 - Edit configuration

Edit the "config.properties" file in your config files directory to set correctly for your environment. In particular, edit these:

javax.persistence.jdbc.url
javax.persistence.jdbc.user
javax.persistence.jdbc.password
hibernate.search.default.indexBase (recommend choosing something in your data dir, e.g. c:/mapping/data/indexes or ~/indexes)
mail.smtp.to (list for automated system emails)
send.notification.recipients (list for automated tools, like reports generation and database qa)

Step 6 - Create database

Create a MySQL UTF8 database. e.g.

CREATE database mappingservicedb CHARACTER SET utf8 default collate utf8_unicode_ci;

Step 7 - Load data

Download and unpack the data file (mapping-demo.zip) into your data directory (e.g. c:/mapping/data):

Run the "Reset Demo Database" integration-test. You must specify 3 parameters:

run.config=c:/mapping/config/config.properties
skipTests=false
maven.home=c:/apache-maven-3.3.9

See images below to set up a JUnit run configuration that will generate your demo database.

Step 8 - Deploy wars

Deploy the mapping-rest.war file to a Tomcat server - either through Eclipse or a standalone tomcat installation.

Setting up Tomcat in Eclipse is very easy, you follow these steps.

Download and install apache tomcat 7 in c:/apache-tomcat-XXXX
In Eclipse use the J2EE perspective and click on the "Servers" tab.
From here, you can add a server which simply involves pointing Eclipse to the Tomcat install directory.
You can right-click on term-server-rest.war file and use "Run As->Run on Server" to deploy to Tomcat.

NOTE: sometimes in Eclipse this doesn't work and the tomcat does not properly recognize or deploy the app.
In this event, double-click on the tomcat server installation in the servers tab.
In the configuration screen click "Open launch configuration"
There, look on the Arguments tab and find the -D setting for "catalina.base", e.g.

-Dcatalina.base="C:\Users\Brian Carlsen\workspace-luna\.metadata\.plugins\org.eclipse.wst.
server.core\tmp0"

 If you open this directory you'll see a "webapps" folder. To deploy you simply build and copy the war files to that directory and
launch the server in Eclipse.

The Tomcat server needs to be able to find the configuration file from step 3. Double-click on the Tomcat server you installed, open the
launch configuration and add this setting to the "Arguments" tab:

-Drun.config=/path/to/your/config.properties

Step 9 - Test

Check that it all works by going to

http://localhost:8080/mapping-rest/index.html

This should be the login page for the application. If you have security disabled, you should be able to log in using a username and matching password
of 'lead1' or 'specialist1' or any of the usernames listed in the config.properties file.

References/Links

Download Eclipse
Download Git
Download Java
Download Maven
Download MySQL
Download Tomcat

http://localhost:8080/mapping-rest/index.html
https://www.eclipse.org/downloads/
http://git-scm.com/downloads
https://java.com/en/download/index.jsp
http://maven.apache.org/download.cgi
http://dev.mysql.com/downloads/
http://tomcat.apache.org/download-70.cgi

	Building and Deploying in Eclipse

