SNOMED CT offers a number of analytics techniques, which are not possible using other coding systems. SNOMED CT's hierarchical design improves upon the purely lexical query capabilities of free text lists or 'flat' controlled vocabularies. For example, a purely text based query for 'kidney disease' will not return the kidney disease 'glomerulonephritis'. Purely mono-hierarchies, however, limit querying to a single grouping of each code. For example, using a mono-hierarchy 'tuberculosis of the lung' must be assigned a code which makes it either a kind of 'lung disease' or a kind of 'tuberculosis' – however it cannot be both. Using SNOMED CT's polyhierarchy 'tuberculosis of the lung' can be represented as both a kind of 'lung disease' and a kind of 'tuberculosis'. The inclusion of other attribute-based defining relationships and the ability to represent SNOMED CT using OWL 2 EL enables additional Description Logic techniques for classifying and querying SNOMED CT. Extending these capabilities even further, it is possible to use Description Logic techniques across both the terminology and the structure of the patient records in which the codes are stored. Finally, in some specific use cases such as billing, reimbursement and statistics where double counting must be avoided, clinically recorded SNOMED CT codes can be used to map into more general statistical classifications, such as ICD (International Classification of Diseases).

In this section, we describe how the following analytics techniques can be used to support analytics over SNOMED CT enabled data. The techniques described include:

In practice, a query language may combine a number of these techniques in the same syntax. With the possible exception of the last two approaches, these SNOMED CT query techniques should then be embedded within an EHR query to ensure that the semantic context of the surrounding patient record is taken into account.