
The syntax of many-valued relations

P. Eklund1

Ume̊a University, Department of Computing Science, Ume̊a, Sweden

Abstract. In this paper we show how many-valued relations syntacti-
cally can be formulated using powertype constructors. This in turn en-
ables to describe the syntax of generalized relations in the starting point
sense where the category sets and relations is isomorphic to the Kleisli
category of the powerset monad over the category of sets. We can then
generalize to work over monoidal closed categories, and thereby descrip-
tion logic, formal concepts and rough sets can be viewed as depending
on that powertype constructor, and within a setting of many-valued λ-
calculus. In order to achieve this, we will adopt a three-level arrangement
of signatures [3], and demonstrate the benefits of using it.
Keywords: Concept, functor, generalized relation, monad, signature.

1 Introduction

Terms are the foundational cornerstones of logic, and signatures are founda-
tional for the term construction. Type constructors are frequently used to create
new sorts from old ones, but type constructors are traditionally adopted from
the outside. This means that type constructors are not seen as operators in a
signature in its own right.

We adopt a three-level arrangement of signatures [3] where the middle level
contains type constructors, and the first and third level, respectively, is used to
clearly distinguish terms from λ-terms. The conventional definition of λ-terms
is informal, and, in fact, not constructive, or at least to say that it hides the
underlying formal term construction. Doing so, the conventional definition cre-
ates a demand for renaming, which cannot be formally justified, but is an ad hoc
necessity to avoid ambiguities. Similar hidden phenomena appears, of course, in
many branches of computing, even in Turing machines, that hides recursion in
a way that makes Church’s thesis to be informal only.

We respect Church’s view that λ is just an informal symbol [2], and we go
even further by showing how it can be formalized, when it must be formalized.
A fundamental consequence for terms on signature levels is then that λ is seen
not to be a general abstractor, but rather that any operator possesses its own
capacity to abstract itself, and not to possess any capacity whatsoever to ab-
stract anything else. In an expression like λx.f , λ is unique to f , and should be
clearly viewed as “f owns its λ”. This obviously departs from traditional views
and definitions of λ-terms, but on the other hand it disables the appearance
of “unwanted” terms. Doing so we, we can also avoid renaming. In fact, our
approach on avoiding renaming goes far beyond de Bruijn’s notation [1].



2

A key enabler is then the possibility to use a wide variety of further type
constructor, together with the function type constructor producing λ-calculus.
The type constructors enable the transportation of terms on level one in the
three-level arrangement of signatures to become abstracted to λ-terms on the
third level. A key issue for the syntax of relations, and e.g. for fuzzy description
logic, formal concepts and rough sets, is the use of the powertype constructor.
This also enables to describe the syntax of generalized relations in the sense
where the category of sets and relations is isomorphic to the Kleisli category of
the powerset monad over the category of sets.

For many-valuedness to become identifiable within and because of the use
of suitable underlying categories, we use monoidal categories, and thereby the
notion of many-valued description logic, formal concepts [5] and rough sets [4],
can be seen as depending on that powertype constructor. In this paper we focus
on description logic.

2 Informally defined terms in type theory

The informal definition of (untyped) λ-terms basically states, firstly, that a vari-
able is a λ-term, secondly, if M is a λ-term, then λx.M is a λ-term, where x is
a variable (abstraction), and thirdly, if M and N are λ-terms, then also MN is
a λ-term (application).

Traditional λ-calculus looks at terms as becoming abstracted to operators.
It is generally seen as a nice trick, but cannot be formally and logically justified.
What in fact happens is that an operator is abstracted to another operator, of
different arity. Variables cause confusion, and the notion of free and bound is the
root of this inconvenience, trying to make substitution something more than it
actually is. Substitution is a morphism in the Kleisli category of a given term
monad and over a selected category [3]. Church [2] indeed called “λ” an improper
symbol, together with “(“ and “)” also being improper symbols. The proper
symbols are those residing in the signature, or being symbols for variables. Church
also states the following: A complete incorporation of the calculus of λ-conversion
into the theory of types is impossible if we require that λ and juxtaposition shall
retain their respective meanings as an abstraction operator and as denoting the
application of function to argument. This obviously means that λ is not to be
seen as an operator itself appearing in some signature.

Note also that Church’s ι and o types are not clearly defined. There is a
consensus about ι being the ‘type of types’, but we have to be careful e.g. not
say that “ι is a ι”. This creates problems, and modern type theory still struggles
with this issue. The o type for ‘propositions’ is also still not explained in a
satisfactory way. Church did say that o is the type of propositions, but he also
states the following: We purposely refrain from making more definite the nature
of the types o and ι, the formal theory admitting of a variety of interpretations
in this regard. Of course the matter of interpretation is in any case irrelevant
to the abstract construction of the theory, and indeed other and quite different
interpretations are possible (formal consistency assumed).



3

3 Levels of signatures

The syntax of relations, i.e., the powertype, resides as a unary operator on the
second level in a three-level arrangement of signatures. Generalized relations,
as syntactic objects are therefore λ-terms in a general sense, i.e., generality
depending on the semantics of the operator, but in particular, as we shall see,
on the underlying category of the term monad producing types as terms on that
second level for the sake of delivering generalized λ-terms over the third level
signature.

In order to explain this in all detail, we adopt the categorically somewhat
informal notation Σ = (S,Ω) of a signature. The way it actually needs to be
handled in a more strict fashion is explained in [3], which also contains detail on
the corresponding formal and fully categorical construction of the term monad
with its underlying term functor TΣ . For a sort s, and a term t of sort s, we
may use the notation t :: s. The underlying category is some monoidal biclosed
category, but in this treatment we hide detail about this underlying category.

On level one, we have Σ, and terms over Σ are produced by TΣX, where
X is an object of variables in the underlying category. In case of a one-sorted
signature over the category of sets and functions, terms are just traditional terms
as typically seen in first-order logic.

On level two, the level of type constructors, with introduce the single-sorted
signature

SΣ = ({type}, {s :→ type | s ∈ S} ∪ {V : type× type→ type}),

where we then have TSΣ∅ as the object of all types and constructed types.
On level three, the level then includes λ-terms based on the signature Σ′ =

(S′, Ω′) where
S′ = TSΣ∅

and Ω′ is

{λωi1,...,in :→ (si1 V · · ·V (sin−1
V (sin V s)) | ω : s1 × . . .× sn → s ∈ Ω}

included with the operator

apps,t : (s V t)× s→ t.

In this notation (i1, . . . , in) is a permutation of (1, . . . , n). Note also how level
one operators are transformed to constant operators on level three. Further,
note indeed how “ω owns its abstraction” in λωi1,...,in . In fact, we could even
avoid using the informal symbol ‘λ’ in this context.

As an example, consider the signature of natural numbers

NAT = ({nat}, {0 :→ nat, succ : nat→ nat}

on level one. The 0-ary operator 0 converts to λ00 :→ nat, i.e., as a 0-ary operator
on level three. The unary operator succ is (λ-)abstracted to become a 0-ary



4

operator λsucc1 :→ (nat V nat) on level three. Note also that we must not
confuse nat on level one with nat on level three, even if for simplicity we use
the same notation.

We can now see the advantage in avoiding the need of renaming. In the
traditional notation in λ-calculus, substituting x by succ(y) in

λy.succ(x)

requires a renaming of the bound variable y, e.g., λz.succ(succ(y)). Such a
renaming can now be avoided. On level one we have the substitution

σnat : Xnat
// TNAT,nat(Xt)t∈{nat}

where σnat(x) = succ(y), and x being a variable on level one. The extension of

σnat

is

µXnat
◦ TNAT,nat (σt)t∈{nat} : TNAT,nat(Xt)t∈{nat} // TNAT,nat(Xt)t∈{nat}.

On level three we then have the substitution

σnat′ : Xnat′
// TNAT′,nat′(Xt)t∈S′

with σnat′(x) = appnat′,nat′(λ
succ
1 , x), x being a variable on level three, so

µnat′ ◦ TNAT′,nat′ σnat′(appnat′,nat′(λ
succ
1 , x))

requires no renaming.
Many-valued, or fuzzy, λ-terms can be introduced either using monad com-

positions, or allowing TΣ′ to be a functor over an underlying category (Goguen)
Set(Q), where Q typically is a quantale.

On β-reduction we obviously have the following transition from the tradi-
tional form to using the three-level signature. Let [x := t] be a substitution, i.e.,
we have some σ(x) = t, and choose a ω : s1 × s2 // s. Then β-reduction

λx.λy.ω(x, y) t→β λy.(ω(x, y)[x := t]) = λy.ω(t, y) :: s2 V s

transforms to

(µ ◦ Tσ)(app(λωs1,s2 , x))→β app(λωs1,s2 , t) :: s2 V s.

All these constructions can potentially be used in natural language expres-
sions involving modifiers and quantifiers in expresions like “there are more small
balls than large balls in this box”. Obviously, there are no unique solutions to
handle this as they are context dependent. Possible encodings of such expression,
or related subexpressions, in our three level signatures setting for λ-terms, could
view modifiers are closely related to type constructors. Modifiers as operators
on level three are then specified using constructed types on level two. We should
note that quantifiers are more like abstractors of sentences, and it may therefore
be anticipated that the formalization of quantifiers, with quantifier symbols as
informal symbols, is similar to the formalization of the way λ acts on expressions.



5

4 The syntax of generalized relations

The observation that relations R ⊆ X × X correspond precisely to functions
(in form of substitutions) σR : X // PX, where P is the powerset functor over
the category of sets and functions, is the basis for viewing generalized relations
as morphisms (substitutions) in the Kleisli category over generalized powerset
monads.

For Σ = (S,Ω) on level one, we now extend SΣ with further operators
beyond just V. Concerning unary operators we may include an F : type→ type,
which intuitively is expected to be semantically described by a functor, that is,
assuming that the ‘algebra’ of type is the class of objects in some monoidal closed
category. Whereas the algebras A(Σ) of signatures Σ, involving assignments of
sorts s to domains A(s) of A, are standard according to universal algebra, the
‘algebra’ of the (Σ-)superseding type signature SΣ is not immediate since the
domain assigned to the sort type clearly cannot be just a set. There are several
options for this, and these considerations may go beyond traditional universal
algebra. These discussions are outside the scope of this paper.

The ‘syntactic functors’ view is based on unary type constructors φ, ψ :
type → type, allowing the composed type constructor ψ ◦ φ : type → type

by (ψ ◦ φ)s = ψ(φs). For unary type constructors φ, ψ : type → type, a type
transformation τ from φ to ψ, denoted τ : φ⇒ ψ, if it exists, is assumed, for all
s ∈ TSΣ∅, to be given by a unique (constant operator) τs :→ (φs V ψs). Further,
we assume that any f :→ (s V t) gives rise to a unique φf :→ (φs V φt).

Various ‘syntactic set functors’ can be introduced, including the ‘powerset’
type constructor P : type→ type on level two, intuitively thinking that the ‘al-
gebra’ of P is the powerset functor, with the underlying monoidal closed category
being the category of sets and functions.

5 Description logic

For transforming description logic into our categorical framework, we use nota-
tions in [6]. Interpretations I = (DI , ·I), where ·I maps every concept description
to a subset of DI , use D for that universe, which should not be confused with
D as used for concept descriptions, e.g., in expressions like C

⊔
D, where D is

not to be understood as the “D in DI”.
With C as a “concept”, we have CI ⊆ DI ∈ PDI . This means that PDI

is the actual ‘algebra’. Roles R are semantically described as relations RI ⊆
DI ×DI , i.e., we can equivalently write it as a substitution RI : DI // PDI .
The inverse relation R−1 is what is actually used on the semantic side, and, in
fact, we have

(∃R : C)I = {a ∈ DI | ∃(a, b) ∈ RI : b ∈ CI} = µDI (PR−1C).

Note how ‘∃’ in ∃(a, b) ∈ RI : b ∈ CI is different from ‘∃’ in (∃R : C)I , where
in the latter it appears as an informal symbol providing an abstraction of C.
In fact, the “existential quantifier” in ∃R : C is an “R-modality” applied to the



6

powerconcept C. The definition for the semantic expression (∃R : C)I uses the
existential quantifier that appears in the assumed underlying set theory.

Concerning the underlying signature and related variables, in [6] the situa-
tion is unclear, given the assumption about the existence of two further disjoint
alphabets of symbols, which are called individual and concept variables. Logically,
variables are not part of any alphabet. Variables are terms, and as such they
are terms of a certain type. We should therefore speak of “individual concept”
rather than “individual variable”, and then use x, y, z as variables for individual
concepts, and X,Y, Z as variables for concepts.

Now typing of “concept” and “individual concept” comes into play, and we
will need type constructors on level two. As opposed to [6], we say “concept”
instead of “individual concept”, and “powerconcept” instead of “concept”. The
underlying signature must be formalized, where concept is a sort in the given
underlying signature on level one. On level two, concept becomes a constant
operator, and a type constructor P is then used to produce a new type Pconcept,
which in their ‘algebra’ will be understood, respectively, as DI and PDI .

Simply typed description logic can now be formally defined in λ-calculus. Let
Σ = (S,Ω) be on level one, where S = {concept}. Operators in Ω are the
constants c1, . . . , cn :→ concept. Concepts and powerconcepts must eventually
reside in the same signature on level three. Therefore, on level two, we use SΣ ,
so that concept :→ type becomes a constant in SΣ . We then include the type
constructor P : type → type into SΣ , and as the constructed type for “power-
concept”. Note that P(concept) is a term on level two, becoming a sort on level
three. A fundamental weakness of traditional description logic is the intertwin-
ing of syntax and semantics of the powerconcept. A variable x ∈ XP(concept) is
a “concept variable” in the sense of [6], and is also a ‘term’ as an element of
TΣ′,P(concept)(Xs)s∈S′ . On level three we have c1, . . . , cn ∈ TΣ′,concept(Xs)s∈S′ .
“Roles” are of the form r :→ (P(concept) V P(P(concept))), which cre-
ates the need to include operators η :→ (concept V P(concept)) and µ :→
(P(P(concept)) V P(concept)) on level three.

A concept
c :→ concept

on level one becomes a “singleton powerconcept”

appconcept,P(concept)(η, c)

on level three, and the syntactic expression “∃r.x” as a term of type P(concept)
can be defined as

∃r.x = appP(P(concept)),P(concept)(µ, appP(concept),P(P(concept))(r, x)).

“Disjunction” and “negation” are added as new type constructors on level
two as

t : P(concept)× P(concept)→ P(concept)

and
¬ : P(concept)→ P(concept).



7

6 Conclusions

We have shown how syntactic aspects of description logic can be extended to
involve generalized relations as compared to just being represented by powerset
functors. Double powerset functors, and a range of composed functors can be
used, thus representing relations in a more generalized sense. These generaliza-
tions are interesting to investigate further over various underlying categories.
Viewing many-valued description logic as part of λ-calculus is more general as
compared to approaches in [8,7], where fuzzy description logic is basically simply
typed description logic with the semantics of P in practice being extended only
to the many-valued powerset monad. Our approach reveals the modal nature of
description logic more clearly, and shows why it is doubtful to speak about the
“existential quantifier” in description logic.

References

1. N. G. De Bruijn, Lambda Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theorem,
Indagationes Mathematicae (1972) 381-392.

2. A. Church, A formulation of the simple theory of types, The journal of symbolic
logic 5 (1940), 56-68.

3. P. Eklund, M.A. Galán, R. Helgesson, J. Kortelainen, Fuzzy terms, Fuzzy Sets and
Systems 256 (2014), 211-235.

4. P. Eklund, M.A. Galán, The rough powerset monad, Journal of Multiple-Valued
Logic and Soft Computing 13 (2007), 321-334.

5. P. Eklund, M.A. Galán, J. Kortelainen, M. Ojeda-Aciego, Monadic formal con-
cept analysis, RSCTC 2014, (Eds. C. Cornelis et al.), Lecture Notes in Artificial
Intelligence 8536 (2014), 201-210.

6. M. Schmidt-Schauß, G. Smolka, Attributive concept descriptions with complements,
Artificial Intelligence 48 (1991), 1-26.

7. U. Straccia, A fuzzy description logic, in: J. Mostow, C. Rich (Eds.), AAAI/IAAI,
AAAI Press / The MIT Press, 1998, 594-599.

8. J. Yen, Generalizing term subsumption languages to fuzzy logic, in: IJCAI, 1991,
472-477.


	The syntax of many-valued relations

