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Abstract

In this paper we will show how purely categorical constructions of terms are advantageous when investigating situations concerning
uncertainty; more specifically where uncertainty comes from and how uncertainty is integrated when dealing with terms over selected
signatures. There are basically two ways of invoking uncertainty for terms. On one hand, we may proceed by building composed
monads where uncertainty is provided by some suitable monad composed with the traditional term monad. On the other hand,
we can provide a strictly formal basis for term monads being created over categories themselves carrying uncertainty. This is the
distinction between ‘computing with fuzzy’ and ‘fuzzy computing’ and the fundamental question raised by these constructions is
where uncertainty resides in language constructions for logic. This paper also shows how the notion of signature often needs to be
expanded to levels of signatures, in particular when dealing with type constructors. Such levels allow us to strictly delineate, e.g.,
primitive operations, type terms, and value level terms. Levels of signature will in this paper be exemplified by the construction of
the signature of simply typed lambda calculus.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In foundations, we need to be careful about the distinction between ‘logic for mathematics’ and ‘mathematics for
logic’, and we need to be respectful about not mixing metalanguages with object languages. In this paper we do
‘mathematics for logic’, or to be more precise, ‘category theory for logic’. Category theory then is our metalanguage
for creating sets of terms and term functors. We use Zermelo–Fraenkel set theory including the Axiom of Choice (ZFC)
as part of the set-theoretic metalanguage for category theory.

In our view, terms are really the foundational cornerstones of logic, and we also have to be precise about the underlying
signatures containing sorts and operators. Substitutions are morphisms in the Kleisli category for the particular term
monad and therefore fuzziness in terms carry over canonically to fuzziness in substitutions.
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Type constructors manipulate sorts, and create new sorts, and this presents a situation where we need to understand
the notion of levels of signatures. The concept of �-terms can be handled within this realm, and this in fact provides the
underlying notions of terms when moving towards fuzzy �-calculus. Fuzzy description logic comes as a special case
in these considerations.

The distinction between one-sortedness and many-sortedness is important as one-sorted constructions do not per se
carry over to many-sorted situations. Here is also where type constructors need special attention, where underlying
categories are important carriers of uncertainty.

Fuzziness is traditionally seen mostly as a level of truth, comparable with and as distinguished from probability.
This provides a rather narrow set theoretic view of fuzzy logic as terms and sentences are left as crisp. In this paper
we therefore strongly argue in favor of allowing uncertainty not just to be considered for algebras of truth values but
also in relation to uncertainty values of operators. This means we open up the avenue for considering fuzzy terms, and
thereby influencing fuzziness in sentences, and so on throughout all constructions of logic languages.

The history of expressions as appearing in argumentation and logic is manyfold. Further, logic in a historical
perspective can be viewed in terms of the distinction between argument and argumentation. Focusing on argument
invites to thinking that there is an overall logic, i.e., one language common to everybody in dialogues involving
arguments. Focusing on argumentation leads to thinking about individual logics, i.e., communication between people
is really communication between the logics adopted by respective individual. Individualization then also calls for
making a distinction between the observer and the observation, i.e., the function and the function value.

Function symbols and abstractions have been dealt with ever since the late 19th century. Lambda-like expressions
were proposed already by Frege [1,2] and Peano [3], and Hilbert’s lectures followed by Grundlagen is a culmination
in its own right. Contemporary developments of set theory are today the standard metalanguage, e.g., for category
theory. During the time of Hilbert’s lectures, Schönfinkel went a step further with his untyped combinators, although
his ideas emerged before 1920, the paper, Bausteine, was not published until 1924. During the 1930s, Curry and Church
worked intensively on developing groundwork for type theory and �-calculus, and by 1940, simply typed �-calculus
had matured to its final form. Gödel and his incompleteness results are not directly related to the issue of terms, but
rather to sentences and provability of sentences. In these respects, ‘provability of sentence’ is itself considered as a
sentence, and this self-referentiality has indeed been under debate for almost a century. Whereas self-referentiality
related to sets are seen leading to ‘paradoxes’, e.g., as pointed out by Russell, self-referentiality related to sentences
leads to ‘incompleteness’. Kleene develops deep results, e.g., for recursion culminating in his Metamathematics, but
Kleene was surprisingly invisible during the course of further developments of type theory. The 1960s then is the time
for model theory and forcing, and by the 1970s, category theory and universal algebra are already well established.

The outline of this paper is as follows. Sections 2–4 introduce not only the objectives and backgrounds but also provide
the notation used in the subsequent formal constructions, more specifically, the necessary algebraic and categorical
notions are briefly presented. In Section 5 we introduce many-sorted signatures as well as their fuzzy enrichment.
Section 6 then covers the construction of term functors and monads over the defined signatures. In Section 7 we
consider the application of such term monads in, e.g., type theory, �-calculus, and description logic. Section 8 includes
some notes on foundational matters and, finally, Section 9 concludes the paper and provides some perspectives for
future investigations.

2. The need for formal descriptions of the term sets

In defining terms and term sets, the historical and contemporary sources in computing science and mathematics
almost universally rely on ‘verbal’ definitions. For example, in [4] we have a definition similar to the following:

Let � = (S, �) be a many-sorted signature with � as set of operators and S a set of sorts. Assume for each s ∈ S
a set of variables Xs . We then form terms as follows: A variable x ∈ Xs is a term of sort s, constants � :→ s are
terms of sort s, and then inductively, if � : s1 × · · · × sn → s is an n-ary operator, and t1, . . . , tn are terms of sort
s1, . . . , sn , respectively, then �(t1, . . . , tn) is a term of sort s.

This is then followed by a seemingly strict definitions of algebras:
A �-algebra A for a signature � = (S, �) consists of a carrier set A(s), for each s ∈ S. Further, for each
� : �� s ∈ �, there is an element A(�) ∈ A(s), for each � : s1 × · · · × sn �� s ∈ � with n ≥ 1, there is a
mapping

A(� : s1 × · · · × sn �� s) : A(s1) × · · · × A(sn) �� A(s).
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These constructions are then typically completed with definitions of term valuations as follows:
Let t ∈ T�X be a term for the signature � = (S, �), and X = ⋃

s∈S Xs a set of variables. The value of t in a
�-algebra A together with variable assignment v : X �� A is denoted A(v)(t) and is defined inductively as

A(v)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vs(x) if t = x ∈ Xs

A(�) if t = �, � : �� s ∈ �

A(�)(A(v)(t1), . . . , A(v)(tn)) if t = �(t1, . . . , tn), n ≥ 1,

ti ∈ T�,si X, 1 ≤ i ≤ n, and

� : s1 × · · · × sn �� s ∈ �

for each s ∈ S.
Note here that the set T�X at this point is not yet defined functorially.

Clearly, these informal definitions are in many cases sufficient and easily understood by readers. Unfortunately,
however, such definitions give us little insight into the nature of terms and term sets. In particular, they give no
information on suitable generalizations of terms and term sets. Indeed, in this non-categorical definition it is not even
clear what a ‘set’ is. The typical assumption, unless otherwise stated, is that it resides in the metalanguage for an
underlying set theory, which typically is Zermelo–Fraenkel’s set theory. In a categorical framework, sets can reside in
the underlying set theory, and also as objects in the category Set of sets.

More strict functorial constructions are well known and Manes [5] proved that the one-sorted term functor can be
extended to a monad. However, the term functor constructions of Manes are still treated relatively informally. Purely
categorical constructions of the one-sorted term monad over Set appeared much later, e.g., in [6].

Such purely categorical constructions present a clear path towards the generalizations we find lacking in the less
strict term constructions. In the particular case of fuzziness they allow us to be very precise as to where the ‘fuzziness’
actually reside and we may indeed consider several possible answers to this question. One such view is obtained by
considering the many-valued powerset monad composed with the term monad as described in [7,8]. Another possibility
is reached by generalizing the term monad itself from Set to some category with richer structure, in particular the
category Set(L), as described in [9], which we here will extend to Set(Q) and Set(K) for quantales and Kleene
algebras, respectively.

Thus, there is an established view of terms and term sets based on strict categorical definition that invites to interesting
non-classical extensions. This view is, however, strictly relegated to one-sorted signatures. We therefore find ourselves
trapped when considering the move to more advanced applications where many-sorted signatures are the norm. It is
often, and perhaps reasonably, assumed that extending the untyped term monad to the many-sorted case is trivial or
at least straightforward. As the construction given in this text will demonstrate, this is not the case. The many-sorted
extension of the term-functor is in fact quite intricate and care must be taken to ensure that it remains a monad so as to
retain the possibility of further non-classical generalization.

More specifically, the categorical construction of the many-sorted term monad T� over the “sorted category of sets”
SetS as provided in this paper, gives substitutions as morphism in the Kleisli category (SetS)T� , where � = (S, �) is
the underlying many-sorted signature, and S is the corresponding set of sorts. This then opens up avenues for many-
sorted extensions and applications over them. One such application is in frameworks for institutions and general logic
as initiated in [10].

Clearly, the notion of algebra and term valuation must be adapted for this form of generalized terms and importantly,
we may in this adaption consider more detailed definitions. For example, we view valuation as a two step operation
with the first step performing a term transformation taking ‘syntactic’ operators to ‘semantic’ operators and the second
step being the actual valuation over a ‘semantic term’. In this form of valuation we are, for example, better able to
handle variable assignment in a compositional manner.

3. Lattices, quantales and Kleene algebras

In this section we recall the algebraic structures needed in further sections. There are lots of textbooks and monographs
which may be used as “standard” references for algebras in general, for example [11,12]. In this context we give a
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traditional non-categorical and one-sorted view to algebras while in further sections many-sorted algebras are treated
categorically, syntactic and semantic parts clearly distinguished, to serve categorical development of logic.

At first, a pair (A, F), where A is a set and F is a set of n-ary (n ≤ k) operations on A, is called an algebra, and we
writeA = (A, F). The elements of F are called finitary operations on A, because k ∈ N is a given maximum arity. The
0-ary (nullary) operations take no arguments and they are considered as constants with values in A. The set A is called
base set or underlying set of A. If F is finite with m elements then it is convenient to just list the finitary operations,
for example, A = (A, f0, f1, . . . , fm−1). If some operation, say fi , is a binary operation then we usually write for all
a, b ∈ A, a fi b instead of fi (a, b) or (a, b) fi .

When exploring different kinds of algebras it is a habit to define a collection of certain properties for algebras by
means of equational laws. In the following we define certain algebras, lattices, and some of its derivatives (see [13,14]
for detailed discussion on lattices and order):

A lattice L is an algebra (L , ∨, ∧), where ∨ and ∧ are binary operations join and meet, respectively. These binary
operations must satisfy for all a, b, c ∈ L ,

idempotency : a ∨ a = a, a ∧ a = a,
commutativity : a ∨ b = b ∨ a, a ∧ b = b ∧ a,
associativity : (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c),
absorption : a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a.

Algebras (L , ∨) and (L , ∧) are called join semilattice and meet semilattice if the operations satisfy applicative laws
for lattices. A lattice L = (L , ∨, ∧) is distributive if for all a, b, c ∈ L , a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). For any
lattice L = (L , ∨, ∧) it is possible to define a binary relation ≤ called (partial) order by assigning for all a, b ∈ L ,
a ∨ b = b ⇐⇒ a ≤ b. An element u ∈ L is called an upper bound of S ⊆ L if for all a ∈ S, a ≤ u. An element
b ∈ L is called a least upper bound or supremum of S ⊆ L (if it exists), denoted

∨
S, if b is an upper bound of S and

for each upper bound u of S we have b ≤ u. It is well-known that
∨{a, b} = a ∨ b for all a, b ∈ L . Dually, infimum

of S ⊆ L , denoted
∧

S, is given as the greatest lower bound of S (if it exists). A lattice L = (L , ∨, ∧) is complete if
for all S ⊆ L ,

∨
S ∈ L and

∧
S ∈ L . In a complete lattice L = (L , ∨, ∧) we have special elements, � = ∨

L which
is the greatest element, and ⊥ = ∧

L which is the smallest element (if such an element exists). For a complete join
semi-lattice (L , ∨) we have for all S ⊆ L ,

∨
S ∈ L . Let us now enrich L by an associative binary operation � with the

following distributive laws: for all a ∈ L and S ⊆ L , a � (
∨

S) = ∨{a �b|b ∈ S}, and (
∨

S)�a = ∨{b �a|b ∈ S}.
Given these enrichments we have now an algebraic structure Q = (Q, ∨, �) called a quantale [15]. It is clear that we
have for all a ∈ Q, a � ⊥ = ⊥ � a = ⊥. A quantale Q = (Q, ∨, �) is unital if there exists an element ∈ Q,
called unit (or identity), such that for all a ∈ Q we have � a = a � = a. When such special element actually
exists (by definitions), we may prefer to include them explicitly in the notation for the algebra, so that (Q, ∨, �) would
be explicitly written as (Q, ∨, �, ). Further, ∈ Q is called left (resp. right) unit if for all a ∈ Q, � a = a
(resp. a � = a). Clearly, if a quantale is not unital but there exists a left (or right) unit then the operation � is not
commutative. For any unital quantaleQ we may define a unary operation ∗, called asterate, such that for all a ∈ Q we
have

a∗ =
∨

{an|n ∈ N}, (AST)

where an = a � a � · · · � a︸ ︷︷ ︸
n times

for n ≥ 1 and a0 = . At this point we mention that unital quantales were studied already

in [16] under the name standard Kleene algebra. Because ∗ may be defined on any unital quantale, we give now some
interesting properties (see [16]) valid in standard Kleene algebras: Let K = (K , ∨, �,∗ ) be a standard Kleene algebra.
For all a, b ∈ K ,

a ≤ a∗, (a∗)∗ = a∗.

and from a ≤ b it follows a∗ ≤ b∗. Because K is also a complete lattice, we write K = (K , ∨, ∧, �,∗ ), and we have

(a ∧ b)∗ ≤ a∗ ∧ b∗, a∗ ∨ b∗ ≤ (a ∨ b)∗.

A unital quantale is called integral if the unit coincides with the top element. In this case the Kleene asterate is trivial
as it always reaches the top element.
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As mentioned earlier, if we give another collection of equational laws (than for lattices) to connect operations then
we have another kind of algebra. Quite often algebras are defined by starting with one operation and then enriching the
structure (see [12]). It is also important to notice that standard Kleene algebras could have been defined without the
concept of order. Indeed, instead of defining the asterate operation by (AST) we might have started from an elementary
algebraic structure called semiring and given certain laws for asterate, and thereby creating Kleene algebras and further
standard Kleene algebras (see [16]). We also notice that the concept of Kleene algebra in this paper differs from the
concept of Kleene algebra (or lattice) as De Morgan quantales [17] or algebras.

Finally, we give some historical notes: Kleene algebras as algebras of regular expressions in the context of automata
can be found already in [18]. Further studies on algebras of regular expressions may be found, for example, in [19,20]
and also in [16,21]. The concept of quantale was given in [15], and non-commutative quantales with quantale sets are
studied in [17]. As an example of unital quantales (or standard Kleene algebras), it is well known that binary relations
with reflexive–transitive closure (as the asterate) form a standard Kleene algebra. The study of relational algebras may
be traced back to [22] and relation algebras with transitive closure can be found in [23].

4. Categories, functors and monads

In this section we aim not so much to provide a prerequisite for categorical notions as we aim at presenting the
categorical notations adopted in this paper. Notation is important for the purpose of keeping concepts separated from
each other, and also makes the reader clearly understand “what belongs to where”.

4.1. Basic concepts and notations

In a category C with objects A and B, morphisms f from A to B are typically denoted by f : A �� B or A
f �� B.

The (A-)identity morphism is denoted A
idA �� A and morphism composition uses ◦. The set of C-morphisms from A to

B is written as HomC(A, B) or Hom(A, B).
The category of sets, Set, is the most typical example of a category, and consists of sets as objects and functions (in

ZFC) as morphisms together with the ordinary composition and identity. Other categories may be defined, for example,
using Set as a basis: a structure, defined by the given metalanguage, is added on Set-objects, and then morphisms
are defined as Set-morphisms preserving these structures. A typical example is to add uncertainty, modelled by a
quantale Q, on Set-objects: The objects of the Goguen category Set(Q) are pairs (X, �), where X is an object of

Set and �: X �� Q is a function (in ZFC). The morphisms (X, �)
f �� (Y, �) are Set-morphisms X

f �� Y satisfying
� ≤ � ◦ f . The composition of morphisms is defined as composition of Set-morphisms. Originally, Goguen considered
a completely distributive lattice as the underlying lattice in [9] and further properties for Goguen categories can be
found in [24].

A (covariant) functor F : C �� D between categories is a mapping that assigns each C-object A to a D-object F(A)

and each C-morphism A
f �� B to a D-morphism F(A)

F( f ) �� F(B), such that F( f ◦ g) = F( f ) ◦ F(g) and F(idA) =
idF(A). Composition of functors is denoted G ◦ F : C �� E and the identity functor is written as idC : C �� C.
The (covariant) powerset functor P : Set �� Set is the typical example of a functor, and is defined by PA
being the powerset of A, i.e., the set of subsets of A, and P f (X ), for X ⊆ A, being the image of X under f,

i.e., P f (X ) = { f (x)|x ∈ X}. A contravariant functor F : C �� D maps to each C-morphism A
f �� B and D-

morphism F(B)
F( f ) �� F(A), and for the contravariant powerset functor P : Set �� Set we have PA = PA and

P f (Y ) = {x ∈ X |∃y ∈ Y : f (x) = y}.
A natural transformation � : F �� G between functors assigns to each C-object A and D-morphism �A : FA �� GA

such that G f ◦ �A = �B ◦ F f , for any f : A �� B. The identity natural transformation F
idF �� F is defined by

(idF)A = idFA. If all �A are isomorphisms, � is called a natural isomorphism, or natural equivalence. For functors F
and natural transformations � we often write F� and �F to mean (F�)A = F�A and (�F)A = �FA, respectively. It is easy
to see that 	 : idSet �� P given by 	X (x) = {x}, and 
 : P ◦ P �� P given by 
X (B) = ⋃B(= ⋃

B∈B B) are natural
transformations. The (vertical) composition � ◦ � : F �� H of natural transformations is defined by (� ◦ �)A = �A ◦ �A,
for all D-objects A.
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Whereas morphisms are typically seen as ‘mappings’ between objects in a category, functors are ‘mappings’ between
categories, i.e., morphisms in (quasi-)categories of categories, and natural transformations are ‘mappings’ between
functors, i.e., morphisms in functor categories. These notions clearly lead to views on hierarchies of sets, classes and
conglomerates, where foundational issues enter the scene, and our approach roughly follows Grothendieck’s [25] and
Gähler’s [26] views of set-theoretic foundations for category theory.

A monad (or triple, or algebraic theory) over a category C is written as F = (F, 	, 
), where F : C �� C is a
(covariant) functor, and 	 : id �� F and 
 : F ◦ F �� F are natural transformations for which 
 ◦ F
 = 
 ◦ 
F and

 ◦ F	 = 
 ◦ 	F = idF hold. A Kleisli category CF for a monad F over a category C is defined as follows: Objects in CF
are the same as in C, and the morphisms are defined as HomCF (X, Y ) = HomC(X, FY ), that is morphisms f : X � Y
in CF are simply morphisms f : X �� FY in C, with 	X : X �� FX being the identity morphism on X. Composition of
morphisms is defined as

(X
f � Y ) � (Y

g � Z ) = X

Z ◦Fg◦ f�� FZ .

The category Rel with sets as objects and binary relations as morphisms is isomorphic with the Kleisli category of the
powerset monad over Set. This invites to viewing Kleisli morphisms as a general notion for relations in the sense of
intuitively being “substitutions”.

Monads were formally recognized and represented in [27,28]. Monads, substitutions as morphisms in Kleisli cate-
gories and F-algebras with further specifications for Eilenberg–Moore algebras for monads appear in [29–31].

Powerset monads and their many-valued extensions are in close connection to fuzzification and are good candidates
to represent situations with incomplete or imprecise information. The many-valued covariant powerset functor L for a
completely distributive lattice L = (L , ∨, ∧) is obtained by LX = L X , i.e., the set of functions (or L-sets) � : X �� L ,
and following [9], for a morphism f : X �� Y in Set, by defining L f (�)(y) = ∨

f (x)=y �(x). Further, if we define
	X : X �� LX by

	X (x)(x ′) =
{ � if x = x ′

⊥ otherwise

and 
 : L ◦ L �� L by


X (M)(x) =
∨

�∈LX

A(x) ∧ M(�)

then L = (L, 	, 
) is a monad.
As a further categorical tool we define, for categories C and D and a given D-object A ∈ Ob(D), the constant object

functor AC : C �� D that assigns all C-objects to A, and morphisms in C to the identity morphism idA.
The universal constructions like limits, e.g., products, pullbacks, equalizers and inverse limits, and their duals,

colimits, e.g., coproducts, pushouts, coequalizers and direct limits, are important instruments in category theory, and
specialize in respective categories, whenever they exist. For illumination, the pullback (also called fibre product)
diagram

X2 Y
f2

��

P

X2

p2

��

P X1p1
�� X1

Y

f1

��

Q

X1

q1

���������������������Q

P

q
�

�

���
�

Q

X2

q2

���
��

��
��

��
��

��
��

��
��

says that, given the morphisms f1 : X1 ��Y and f2 : X2 ��Y , P, with the morphisms p1 : P ��X1 and p2 : P ��X2,
is pullback, with respect to f1 and f2, if, whenever f1 ◦ q1 = f2 ◦ q2, there exists a unique q : Q �� P , such that the
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pullback diagram commutes. This is the same as saying that the pullback is the limit to the diagram

X2 Y
f2

��X2

X1X1

Y

f1

��

which e.g., in [32] is seen as a candidate for a general notion of a co-relation in a category. Such relations are closer
to relational algebraic views as appearing e.g., in database theory for queries. Note that this is intuitively an entirely
different notion of relations as compared to the view of Kleisli morphisms being general relations.

In the case of Set, the set P = {(x1, x2) ∈ X1 × X2| f1(x1) = f2(x2)}, with p1(x1, x2) = x1 and p2(x1, x2) = x2,
is a pullback. The category Set(Q), where Q = (Q, ∨, �), also has pullbacks since Q is in fact a complete lattice.
When replacing in the pullback diagram Set-objects by Set(Q)-objects it is enough to see that the morphisms are also
Set(Q)-morphisms. Clearly, this is found by replacing P, X1, X2 by (P, �), (X1, �1), (X2, �2), respectively, such that
�(x1, x2) = �1(x1) ∧ �2(x2), (x1, x2) ∈ P . Especially, if we replace Y by (Y, ), X1 by (X1, ), and X2 by (X2, ) then
we have for all (x1, x2) ∈ P , �(x1, x2) = �1(x1) = �2(x2).

4.2. Sorted categories

In the one-sorted (and crisp) case for signatures we typically work in Set, but in the many-sorted (and crisp) case
we need the “sorted category of sets” for the many-sorted term functor. We start this section by a more general view
by considering “a sorted category of objects”.

Let S be an index set (in ZFC), the indices are called sorts (or types), and we do not assume any order on S. For a
category C, we write CS for the product category

∏
S C. The objects of CS are tuples (Xs)s∈S such that Xs ∈ Ob(C) for

all s ∈ S. We will also use X S as a shorthand notation for these tuples. The morphisms between objects (Xs)s∈S and
(Ys)s∈S are tuples ( fs)s∈S such that fs ∈ HomC(Xs, Ys) for all s ∈ S, and similarly we will use fS as a shorthand
notation. The composition of morphisms is defined sortwise (componentwise), i.e., (gs)s∈S ◦ ( fs)s∈S = (gs ◦ fs)s∈S .

Functors Fs: C �� D are lifted to functors F = (Fs)s∈S from CS to DS , so that e.g., the regular powerset functor
PS = (P)s∈S and the regular many-valued powerset functor LS = (L)s∈S , both are lifted to functors on SetS .

Products and coproducts,
∏

and
∐

, are handled sortwise. We also have a “subobject relation”, thus, (Xs)s∈S ⊆
(Ys)s∈S if and only if Xs ⊆ Ys for all s ∈ S. It is clear that all limits and colimits exist in SetS , because operations on
SetS-objects are defined sortwise for sets. Further, the product

∏
i∈I Fi and coproduct

∐
i∈I Fi of covariant functors

Fi over SetS are defined as(∏
i∈I

Fi

)
(Xs)s∈S =

∏
i∈I

Fi (Xs)s∈S

and (∐
i∈I

Fi

)
(Xs)s∈S =

∐
i∈I

Fi (Xs)s∈S

with morphisms being handled accordingly.
The category Set(Q)S is called the many-sorted Goguen category. Objects in this category are tuples of pairs

((Xs, �s))s∈S as objects, where for each s ∈ S, �s: Xs �� Q is a function (in ZFC). So, fixing s ∈ S we consider pairs

(Xs, �s) as objects in Set(Q). Now, the Set(Q)-morphisms (Xs, �s)
fs �� (Ys, �s) form morphisms

((Xs, �s))s∈S
( fs)s∈S�� ((Ys, �s))s∈S . It is known that all limits and colimits exist in Set(Q). For example, we have

the inductive limit, i.e., the direct colimit, of the inductive system (((Xs, �s))(i)
s∈S)i∈N = (((X (i)

s , �(i)
s ))s∈S)i∈N, written

as ind lim→ ((X (i)
s , �(i)

s ))s∈S being an object ((Ys, �s))s∈S in Set(Q)S . Here, Ys is the set
⋃

i∈N X (i)
s , and �s is defined

as follows. For x ∈ Ys, we have Ax = {i ∈ N|x ∈ X (i)
s }, and we can define �s(x) = ∨{�(i)

s (x)|i ∈ Ax }.
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It may be sometimes reasonable to handle a quantale Q as a complete lattice, since ∧ may be needed. Moreover, a
standard Kleene algebra K = (K , ∨, ∧, �,∗ ) is also of interest since application of the asterate in term construction is
possible. In further sections we study, for example, term monads over sorted Goguen categories Set(K)S .

4.3. Monoidal biclosed categories

Ever since the beginning of category theory, the notion of a product, and its relation to corresponding exponential
objects, has been of great importance. Furthermore, the Hom-set Hom(X, Y ) in a category, with X and Y as objects, is
indeed an object itself of that category, and therefore a candidate for being an exponential object.

The underlying fundamental situation is related to the natural equivalence

Hom(A × B, C)�Hom(A, Hom(B, C))

In Set, Hom(B, C) is indeed the exponential objects required, and the natural equivalence means that Set is Cartesian
closed. The Cartesian product is, however, quite strong, and therefore, given a category C, the notion of product can
be weakened using bifunctors ⊗ : C × C �� C, where it is, similar to Cartesian products, a custom to write A ⊗ B
instead of ⊗(A, B)), for objects A and B in Ob(C). This branch of category theory is usually called categorical algebra.
For this bifunctor we then come to the issue of so-called monoidal closedness and monoidal closed categories. Note
here also how the natural equivalence is a situation of currying, as known in type theory. There is indeed the intuition
that the monoidal product acts like a composition, i.e., strengthening the currying view of this natural equivalence.
Further, the natural equivalence also invites to thinking about morphisms carrying uncertainty, and this will open up
considerations even for sorts being uncertain, as we more clearly distinguish the name of the sort from how it appears
as a morphism. As morphisms appear in fibres, this in turn invites to intuitively thinking about uncertainty in fibres
as well.

Adding further structure to Hom(X, Y ) is sometimes desirable, e.g., by having operations on morphisms satisfying
certain properties, bringing us e.g., to 2-categories, and from there onwards. Morphisms carrying uncertainties would
also mean adding structure to the Hom-set. In specific situations, the Hom-set may indeed already carry some algebraic
or topological structure, and this is then explored further, as required by the context. The name enriched category
theory indeed comes from this enrichment of Hom-sets, or replacing them with “monoidal objects” constructed using
the bifunctor.

For readers not so well-versed in category theory, all these notions may appear as confusing, and basically we do
not have to answer the question: Is a monoidal category a category or an algebra?, but we may answer it by saying
It’s neither, and it’s both!

The history of monoidal closed categories, and categorical algebra more broadly, goes back to the study of such
natural equivalences [33], in turn inspired e.g., by theories of linear operators [34] and homology theory. Incidently,
from fuzzy arithmetic point of view it is very much unknown how natural equivalences relate to Birkhoff’s generalized
arithmetic [35], on bridging the gap between cardinal and ordinal arithmetic using a partially ordered set view of
numbers, as the construction of “large numbers of functors” including natural equivalences and transformations between
these functors [33]. Thereafter, the notion of adjoint functors [36] came to play an important role for the bifunctor, and
for monoidal closed categories to be more formally defined [37] and analyzed with respect to the coherence condition
[38]. At the beginning, monoidal categories were called categories with multiplication in [39–41]. The name monoidal
closed category emerges more or less in [42], and attains its simple and clean formulation in [43].

In order to make this paper more self-contained, we include here the definition for monoidal closed category, following
the notational style as appearing in [44]. For this purpose, let C be a category, ⊗ : C × C �� C a bifunctor, and I a
unit object in C. If there are natural isomorphisms aX,Y,Z : (X ⊗ Y ) ⊗ Z �� X ⊗ (Y ⊗ Z ), lX : I ⊗ X �� X and
rX : X ⊗ I �� X making the diagrams
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and

(X ⊗ I ) ⊗ Y X ⊗ (I ⊗ Y )
aX,I,Y ��(X ⊗ I ) ⊗ Y

X ⊗ Y

rX ⊗idY ���
��

��
��

� X ⊗ (I ⊗ Y )

X ⊗ Y

idX ⊗lY����
��

��
��

commute, we say that C, equipped with the bifunctor, a unit object, and these natural isomorphisms are a monoidal
category.

For a terminal object I we always have rI = lI . Additionally, a monoidal category becomes a monoidal (left) closed
category, if the functor _ ⊗ B : C �� C has a right adjoint, denoted [B, _], for all objects B. It is right closed, if
A ⊗ _ : C �� C, for all objects A, has a right adjoint. A monoidal closed category is biclosed, if it is both left and right
closed, and a symmetric monoidal category, whenever the tensor product is commutative. Note that, in this context,
Hom(I, _) plays the role of the basic functor [42] up to natural isomorphism, because of

Hom(A, B)�Hom(I, [A, B]).

A symmetric monoidal category is not necessarily monoidal closed. If C is monoidal biclosed, then the tensor product
preserves colimits in both variables separately.

The tensor product for vector spaces is monoidal closed, but not Cartesian closed. Given that the underlying quantale
is commutative and unital, the Goguen category Set(Q) is, by Theorem 5.3.2 in [45], a symmetric monoidal closed
category and it is therefore also biclosed. Note also that any topos is a symmetric monoidal closed category, but Set(Q)
is not a topos.

Generally speaking it is important to say that uncertainty and fuzziness is enrichness to, not generalization of, the
crisp world. In this context the basic functor V removes the enrichment from hom-objects and plays therefore the
important role of a defuzzifer.

5. Signatures

Traditional universal algebra recognizes signatures as consisting of sorts and operators. Computer scientists fre-
quently speak of types instead of sorts. Mathematicians, on the other hand, have been influenced, e.g., by [46] where
the sequence of the argument types is seen as an element in the free monoid over the set of sorts.

Further, the shift from one-sorted signatures to many-sorted signatures is usually seen as a mere technicality, but very
few actually bother to check detail. It is, however, fairly well-known that the shift to many-sortedness is not always
that evident, and in our case when dealing with term functor constructions over various underlying categories, the
many-sorted cases are far from trivial, as we will see.

In the computer science notation, a many-sorted signature � = (S, �) consists of a set S of sorts (or types), and a set
� of operators. The question as to which scope and what extend a signature is a categorical object is non-trivial, and
the categorization can be arranged in different ways, as seen below. The computer science intuitive view is that S as
an index set, and as residing in ZFC, whereas � may be an object in SetS . Thus, � = (�s)s∈S , where �s is an object
in Set, and we would say informally that � = (S, �) is a signature over Set. Operators in �s are then syntactically
written as � : s1 ×· · ·×sn → s, and we say that the arity of � : s1 ×· · ·×sn → s is n, or that it is an n-ary operator.
The 0-ary operators � :→ s are called constant operators, or constants. For simplicity, when we will emphasize the
sorts or arities in syntactic expressions we write � : s1 × · · · × sn → s, and in the case of sorts and arities are known
we may write only � for the operators also in syntactic expressions. Note that each set �s does not necessarily make
preferences for arities, but the “end sort” of the operation, or the sort of “the result of the operation”, is always s. Notice
also that × and → in the syntactic notation for operators at this point come without any meaning, but algebras will
eventually provide × and → with meaning in the underlying category.

In the many-sorted term construction it will be convenient to use the notation �s1×···×sn→s for the set, as an object
in Set, of operators � : s1 × · · · × sn → s ∈ �s with n given, and �→s for the set of constants � :→ s. With these
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notations we keep explicit track of operator sorts as well as their arities and we consider

�s =
∐

s1,. . .,sn
n≤k

�s1×···×sn→s.

For example, if S = {s, t} then a set �s×t→s may differ from �t×s→s. Clearly, if S is one-pointed, then � is a
one-sorted signature.

If �1 = (S1, �1) and �2 = (S2, �2) are signatures, then a signature mapping � : �1 �� �2 is a pair of mappings
(s : S1 �� S2, o : �1 �� �2) such that for each �1 ∈ �s1×···×sn→s

1 , there exists a �2 ∈ �s(s1)×···×s(sn )→s(s)
2 such that

o(�1) = �2.
For signature mappings � = (s, o) : �1 �� �2 and  = (r, n) : �2 �� �3, the composed mapping  ◦ � : �1 �� �3

is defined by (r ◦ s, n ◦ o). Composition of signature mappings is associative, and we may then anticipate the formal
definition of a category of signatures.

Following a strictly mathematical view, in [46] signatures are called S-schéma over set of sorts, and consists of a
triples (�, �, S) where � is seen only as a set of operator symbols, � : � �� Ŝ × S attaches sorts to operator symbols,
where the set of sorts S is extended to the free monoid S = (Ŝ, ·, e) so that elements in Ŝ reflect sequences of types.
Using the computer science notation, an operator � ∈ �s1×···×sn→s would have �(�) = (s1 · · · sn, s). Note also how
the monoidal extension, ŝ, of the signature mapping s will have the monoid homomorphism property.

From computer science point of view we indeed view S simply as a set of sorts, i.e., mostly as an index set, so that S
is not even seen as an object in the category Set. However, in the monoidal view of sequences of sorts, S is an object
of Set and S an object on Mon, the category of monoids, so that we can formally speak of signatures over Set.

The category Set is monoidal biclosed with respect to the Cartesian product, and signatures can more generally be
arranged over any monoidal biclosed category C with tensor product

⊗
. In fact, let S be an object of C, i.e., S represents

the “sort set” in a generalized sense. If we by S0 denote the unit object 1 in C, we can write Sn+1 = S
⊗

Sn , n ∈ N,

and define Ŝ = ∐
n∈N Sn . Sorts s can now be “recovered” in S as arrows 1

s �� S, and one-sortedness would mean that
S is a unit object. In C, we need to require that there is only one arrow 1 �� 1.

With Set as the underlying category for the monoidal biclosed category with the Cartesian product as the tensor
product, the unit object in the monoidal biclosed category is a terminal object in Set. Note that every one-pointed set
is a terminal object in Set, so the unit object is a selected terminal object, e.g., represented by the one-pointed set {�}.
Note also that the arrow 1

s �� S can be identified with an element in S, and vice versa, any element in S generates such
an arrow. This means that there is a bijection between S and HomSet(1, S). Now note that in the more general cases,
the sets S and HomC(1, S) are not necessarily one-to-one, and then HomSet(1, S) represents the sorts, whereas S acts
only as a “base” for that construction of that set of sorts. For these situations it is necessary to introduce the notation
S for the set HomSet(1, S) of sorts, so that we can write s ∈ S which then intuitively means s is a sort in S in the
traditional sense on computer science oriented reading and informal notation.

If Q is a commutative unital quantale, then Set(Q) is a monoidal biclosed category, where again there are many
terminal objects, but the unit object need not necessarily be selected among the terminal objects. In these respects, we
may select as unit object 1 = ({�}, ), where denotes the constant mapping for which (�) = . This unit object is not
a terminal object, but there is a unique arrow 1 ��1. In this case again we have that there is a one-to-one correspondence
between S and HomSet(Q)(1, (S, �)). Note that it is intuitively desirable indeed to have (S, �) corresponding to “crisp
sorts”, but technically we may view S as being one-to-one with HomSet(Q)(1, (S, )). In the case of integral quantales
it makes no difference. The membership functions are multiplied according to the monoid operation in Q (see [45,
Theorem 5.3.2]). Both monoidal structures are symmetric and therefore biclosedness is equivalent to closedness.

Given the sorts, we can now construct the “operator sets” using the following pullback squares:
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where en are the canonical arrows of the coproduct, with e0 being the unit in Ŝ. We then say that (�, �, S) is a signature
over C, or a C-signature.

This intuitively also relates to the situation where the inverse image of a set with respect to a function can be viewed
as a pullback for the corresponding inclusion map and that the function. Indeed, in this intuition, �→s is a kind of the

inverse image of 1 ⊗ 1, and similarly �s1×. . .×sn→s of 1n ⊗ 1 with respect to �.

In order to verify that �→s and �s1×. . .×sn→s really correspond to our intended objects of operators, let us look
at �→s in the situation with C = Set. By definition of pullback, �→s is isomorphic with the set {(�, (�, �)) ∈
� × (1 × 1)|�(�) = (e0 × s)((�, �))}, where p1(�, (�, �)) = � and p2(�, (�, �)) = (�, �). Note that e0 is the
“empty string”, and how then the requirement � ◦ p1 = (e0 × s) ◦ p2 means that �(�) = (e0, s), i.e., � is of the form
� :→ s, as expected.

For Set(Q) the situation concerning the choice between (S, �) and (S, ) would be delicate, indeed in the non-
integral case, as then choosing one over the other will bring us to two different situations concerning the uncertainties

for operators in �→s and �s1×. . .×sn→s, but in the integral case this makes no difference.
With �1 = (�1, �1, S1) and �2 = (�2, �2, S2) being C-signatures, we can now define a signature morphism � :

�1 �� �2 as a pair of morphisms (s : S1 �� S2, o : �1 �� �2) such that

Ŝ1 ⊗ S1 Ŝ2 ⊗ S2
ŝ⊗s

��

�1

Ŝ1 ⊗ S1

�1

��

�1 �2
o �� �2

Ŝ2 ⊗ S2

�2

��

commutes. Here ŝ is the monoidal extension of s. Thus we arrive at a category SignC of signatures over C. The category
SignSet corresponds intuitively with informally defined and anticipated category of signatures.

In the following we provide some typical examples of signatures in SignSet. We use now the computer science
notation rather than the mathematical notation.

Example 5.1. A signature for natural numbers could be given by NAT = ({nat}, {0 :→ nat, succ : nat → nat}),
which indeed is a fundamental example syntactically producing the natural numbers. This signature could be extended
e.g., with an operator for addition.

Example 5.2. The very basic signature for Booleans could be BOOL = ({bool}, {false :→ bool, true :→ bool}),
and additional operators could be introduced for Boolean operators.

Example 5.3. A signature NATORD = ({nat, bool}, {0 :→ nat, succ : nat → nat, false :→ bool, true :→
bool, ≤ : nat× nat → bool}) could be introduced as a many-sorted situation where the operator ≤ needs both nat
and bool. Again, this signature can be extended e.g., to NATADDORD by adding the operator + : nat × nat → nat
(reserved for addition, but still semantically or equationally undefined) to the set of operators in NATORD. Similarly,
logical operators could be included, and so on.

Example 5.4. The set of terms for the signature � = (S, �), S � �, consists only of variables.

6. Term functors

In this section we continue to be two-fold with respect to computer science and mathematical notation. Given the
fact that the literature in both areas is surprisingly sparse with respect to the formal construction of the inductive nature
of the term functor, we start off by providing that formal construction firstly in the many-sorted and the crisp case. We
then shift to the more general term functor construction being over underlying categories for uncertainty. One-sorted
considerations of the term functor was given in [5], however, without a formal inductive construction of the term functor.
The more informal term set construction for one-sorted signatures was originally given in [6], and in [47] it was used
to exemplify convergence structures. In [7], the term construction was used as a basis for providing distributive laws
in connection with the many-valued powerset monad in the one-sorted case.
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6.1. The general term functor construction over monoidal biclosed categories

In the following we provide the general term functor construction that works for any underlying monoidal biclosed
category C with tensor product

⊗
. However, to allow for a more intuitive reading, we present the constructions

specifically for the monoidal biclosed category Set, where the tensor product is the Cartesian product.
We therefore start off with having a signature � = (S, �, �) over Set, where S = HomSet(1, S). One of the

cornerstones for the construction will be providing a functor T�,s : SetS �� Set, appearing in

T�XS = (T�,sXS)s∈S

so that the term functor T� : SetS �� SetS can be extended to a monad over SetS.
As before, we have �s

1 × · · · × sn → s for the set of operators � : s1 × · · · × sn → s in �, i.e., n-ary operators
where we are explicit about the sorts. The many-sorted term functor T� : SetS �� SetS can now be defined by
induction. Firstly, for T1

�,s, we need to introduce some further notation. For any m ∈ Ŝ and any s ∈ S we define a
functor �m,s : SetS �� Set as follows. The special case �e,s, with e being the unit element in the monoid, is the
constant object functor ((�→s)s∈S)SetS . Further, for m = s1 · . . . · sn , we define

�m,s((Xt)t∈S) = �s1×···×sn→s ×
∏

i=1,. . .,n

Xsi ,

for objects, and

�m,s(( fs)s∈S) = id�s1×···×sn→s ×
∏

i=1,. . .,n

fsi

for morphisms.
Note indeed how everything above still works with the Cartesian product for Set generalized to the tensor product

for C.
We can now set

T1
�,s =

∐
m∈Ŝ

�m,s,

and, for � > 1, we can then recursively proceed to define

T�
�,sXS =

∐
m∈Ŝ

�m,s(T�−1
�,tXS � Xt)t∈S),

and

T�
�,s fS =

∐
m∈Ŝ

�m,s(T�−1
�,t fS � ft)t∈S).

This then allows us to define the functors T�
� by

T�
�XS = (T�

�,sXS)s∈S,

and

T�
� fS = (T�

�,s fS)s∈S.

We can also show that there is a natural transformation

��+1
� : T�

�
�� T�+1

�

such that (T�
�)�>0 is an inductive system of endofunctors with ��+1

� as its connecting maps. This natural transformation
builds upon the canonical “embeddings” js : Xs �� T1

�,sXS � Xs that define (��+1
� )S according to

(�2
1)s =

∐
m∈Ŝ

�m,s(( j)S)
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and

(��+1
� )s =

∐
m∈Ŝ

�m,s(((��
�−1)t � idXt)t∈S)

for � > 2, and then with (��+1
� )XS = ((��+1

� )s)s∈S.
Further, since SetS is cocomplete, the inductive limit F = ind lim→ T�

� (in this case with � starting from 1, not 0!)

exists, and the final term functor T� is then given by

T� = F � idSetS .

In the case of NAT, we have

T1
NATX = {0} ∪ {succ(x)|x ∈ X}

and

T2
NATX = {0} ∪ {succ(x)|x ∈ X} ∪ {succ(0)} ∪ {succ(succ(x))|x ∈ X}.

In the case of NATORD, with S = {nat, bool}, we have

T1
NATORD,boolXS = {false, true} ∪ {≤ (x1, x2)|x1, x2 ∈ Xnat}

and

T1
NATORD,natXS = {0} ∪ {succ(x)|x ∈ Xnat},

and so on.
Note that e.g., for ≤ (succ(0), 0) we have not provided any sentences or semantics giving preference to it being

identified with false or true. This is done at a later stage when sentences enter the scene, and when the axioms
representing properties of ≤ are introduced.

The construction above also implies that

T�XS = (T�,sXS)s∈S

and that T� is idempotent, or to be more precise, T� is idempotent up to isomorphism, as there is a natural isomorphism
between T�T� and T�.

The extension of the functor T� to a monad over SetS is enabled by (	T�
s )Xs : Xs �� T�,sXS, such that for all

x ∈ Xs,

(	T�
s )Xs(x) = x,

and also ((
T�
s )Xs)s∈S : T�T�XS �� (T�,sXS)s∈S as the identity, and again with ‘identity’ with respect to the natural

isomorphism. Therefore we can say that we have natural transformations 	T� : idSetS
�� T� and 
T� : T� ◦ T� �� T�

which gives T� = (T�, 	T� , 
T� ) as a monad.
In the general case of monoidal biclosed categories, with underlying category C, T� can also be completed to a

monad over C, because the tensor product preserves colimits, in particular inductive limits. The only open question is
here whether this monad is idempotent. Also note that in the case of idempotent monads the Kleisli category is always
equivalent to the Eilenberg–Moore category [48].

Monadic extensions are important for computer science applications, since composition of substitutions, morphisms
in the corresponding Kleisli category to these monads, become enabled. The notation culture in computer science,
as oriented more towards using Set, expresses a term t as being within the term set T�,sXS, and this is frequently
written briefly as t :: s, intuitively saying “the term t is of type s”. Similarly, for a substitution � : Xs �� T�,sXS, in
programming languages we often write x := t , or even just x = t , instead of �(x) = t , where x ∈ Xs and t :: s.
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6.2. Many-sorted term functors over underlying categories for uncertainty

We now shift from Set as the underlying category for signatures to Set(Q), where Q = (Q, ∨, �) is a quantale.
The first idea for constructing term monads over Set(L), where L is a complete lattice, was given in [49] and further
developed in [50,51]. In this section we discuss the situation concerning the term functor, generally constructed over
any monoidal biclosed category, and how it now specializes in the specific case of Set(Q). Note that (A, �) ⊗ (B, �) =
(A × B, � � �).

Invoking uncertainty in signatures can now be performed e.g., using C = Set(Q). However, from computer science
point of view, whereas uncertainty attached to operators can be intuitively justified, the interpretation of uncertain sorts
is less clear. Polymorphism of types, on the other hand, means variables can appear under several type settings, in
particular in situations where subtypes occur. Generalizations of many-sortedness to order-sortedness describes such
subtypings, allowing the sort set to be partially ordered, and has been developed e.g., in [52].

For a more conventional interpretation concerning computations and programming languages, a signature � =
((�, �), �, (S, �)) in SignSet(Q) would typically come with the restriction � = �. The computer science notation for
such restricted signatures over Set(Q) would be pairs (S, (�, �)), where S is a crisp set, and � : � �� Q assigns
uncertain values to operators. For the term monad construction we need objects (�s1×···×sn→s, �s1×···×sn→s) for the
operators � : s1 × · · · × sn → s with n given, and (�→s, �→s) for the constants � :→ s. These objects are provided
by respective pullbacks using (�, �).

In our general term functor construction we have

�m,s((Xt)t∈S) = �s1×···×sn→s ⊗
⊗

i=1,. . .,n

Xsi ,

and this now specializes to

�m,s(((Xt, �t))t∈S) = (�s1×. . .×sn→s, �s1×. . .×sn→s) ⊗
⊗

i=1,. . .,n

(Xsi , �si )

=

⎛⎜⎝�s1×. . .×sn→s ×
∏

i=1,. . .,n

Xsi , �
s1×···×sn→s �

⊙
i=1,···,n

�si

⎞⎟⎠ .

The extension of T� : Set(Q)S �� Set(Q)S follows the same type of construction as compared to T� over SetS,
and we arrive at T� = (T�, 	T� , 
T� ) as a monad over Set(Q)S .

Example 6.1. The uncertainty related to operators is more intuitive, and clearly makes the distinction between operator
and value of operation. In [53] we provided examples for signatures representing assessment scales in old age psychiatry,
where the distinction between observer and observation is important e.g., when using assessment scales for depression.

Example 6.2. Uncertainty related to variables is less intuitive. Let us consider the following situation concerning the
perception and use of “100 m”. A golfer A receives this information, into a variable xA, about a distance to flag from
ball position on the fairway. The green is surrounded by bunkers both behind and in front of the green, so hitting the ball
90 or 110 m may lead to the ball landing in a bunker. This distance information together with visual identification of
the shape of green is a basis for club selection. The choice may be the pitching or the sand wedge. A non-golfer B and a
person not so well aware of distances in the range of 80–200 m with a ±5 m accuracy receives the same information into
a variable xB , and uses that information to suggest carrying some heavy items by hand instead of waiting for a car to
provide that transportation of the items. Clearly, xA and xB are differently typed so that “100” is also differently typed
for A and B. This in effect means that the variables have a different capacity to carry and embrace that information.

6.3. Substitution and assignment

In this subsection we again follow the computer science notations. Variables are syntactic and their values are
semantic. In variable assignments we further need to distinguish between syntactic and semantic operators. Note how
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� in the framework of its �-algebraA = (A, a) is hosted by �. However, the interpretation a(�) of � is also an operator
but not formally hosted by a signature as compared to �. This usually leads to confusion. In order to overcome this
confusion we have to be more clear about the semantic operators to which syntactic operators are mapped. Now consider
� as the syntactic hosting signature and �′ the corresponding semantic hosting signature. Further, let � = (s, o) : � ���′
be a signature mapping that binds syntactic operators over to operators on the algebraic side, and let �̂ : T� �� T�′ be
the corresponding natural transformation.

For X S being a SetS-object of variables, A� = (AS, aS) being a �-algebra, and AT� = (AS, hS) a T�-algebra,
by a variable assignment with respect to X and A�, i.e., an assignment for variables in X to values in A�, we mean
a morphism (vXS ,A� )S : X S �� AS , where the term A�-evaluation is T�(vXS ,A� )S : T�X S �� T� AS . A variable
assignment with respect to X S and AT� , i.e., an assignment for variables in X S to values in AT� , is a morphism
(vXS ,AT� )S : X S �� AS , where the term AT� -evaluation is hS ◦ �̂AS

◦ T�(vXS ,AT� )S : T�X S �� AS .
For a term tS ∈ T�X S , note how T�(vXS ,AT� )S(tS) is the syntactic term in the appearance as its semantic counterpart,

but still using its syntactical operators, and �̂AS
◦ T�v

X,AT� (tS) is correspondingly the term in its semantic appearance
using its semantic operators. Finally, hS ◦ �̂AS

◦ T�(vXS ,AT� )S(tS) represents ‘the value of ts in As’, as the computed
value given the semantics of the operators.

7. Terms in type theory

Similar to the informal definition of the set of terms, also the set of �-terms is defined informally. Whereas the informal
definition of the set of terms corresponds well with the formal definition, in the case of the set of �-terms the situation is
different. The symbol � is frequently seen as an “abstractor”, but it is not all that clear if � really has a general purpose
capacity to abstract, or if operators in the underlying signature “owns” their abstractions, i.e., is � in an abstraction
really to be indexed by the operator it abstract. Note also that it is actually the operator that is abstracted to another
operator, not the term that is abstracted to an operator. Traditional presentations of �-calculus is not always specific on
that point. Church [54] called “�” an improper symbol, together with “(“ and “)” also being improper symbols. The
proper symbols are then those residing in the signature, or being symbols for variables. Church’s simple typing [54]
has as a motivation the statement that a complete incorporation of the calculus of �-conversion into the theory of types
is impossible if we require that � and juxtaposition shall retain their respective meanings as an abstraction operator
and as denoting the application of function to argument. Therefore � is not to be seen as an operator in any signature.
Church’s types � and o, and their algebras, are not at all obvious, and it is indeed unclear in which signature they actually
reside. Church introduces the type constructor so that (��) is a type whenever � and � are types.

The informal definition of untyped �-terms is as follows:

• a variable is a �-term;
• if M is a �-term, then �x .M is a �-term, where x is a variable (abstraction);
• if M and N are �-terms, then also M N is a �-term (application).

This is seen as an elegant definition of �-term, even if it is unspecific, e.g., about possible underlying ‘basic’ terms
formed out of an underlying signature. Variables are such basic terms, but it is not explicitly said that all underlying
basic terms are �-terms. If the underlying signature is � = (S, �), then variables are the only basic terms. Usually
basic terms are seen as �-terms also in the case where � � �. For example, for the basic term x + 1, �x .x + 1 is the
abstraction.

The situation concerning syntactically constructed natural numbers is interesting. The natural numbers can be in-
troduced as �-terms either as basic terms given the NAT signature, or, as Church did, fixing a function variable f�� as
kind of a “fixsymbol” for natural numbers, and then proceed to define 0�′ as � f��.�x�.x�, 1�′ as � f��.�x�.( f��x�), 2�′
as � f��.�x�.( f��( f��x�)), and so on.

7.1. Levels of signatures

The underlying basic signatures do not include function types and a categorical handling, e.g., of �-term functors
therefore requires an arrangement into levels of signatures. Let s1 and s2 be two sorts in S. The function sort involving
s1 and s2 can be denoted s1�s2. Even if we want to view s1�s2 as a (constructed) sort, it is not part of S. The
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question is then how to expand the signature � = (S, �) to a signature �′ = (S′, �′) so that s1�s2 ∈ S′ whenever
s1, s2 ∈ S. Such an arrangement also enables to keep �-abstractions, as members of �′, clearly apart from �-terms,
residing in the set of �-terms as defined by the �-term functor.

We propose a three-level arrangement of signatures, where the basic signature � is on level one, and �′ is on level
three. On level two we have the (�-)superseding type signature as a one-sorted signature S� = ({type}, Q), where Q is
a set of type constructors satisfying

(i) s :→ type is in Q for all s ∈ S;
(ii) there is a � : type × type → type in Q.

If Q does not contain any other type constructors, apart from those given by (i) and (ii), we say that S� is a
(�-)superseding simple type signature.

For any �-superseding type signature S� we obviously have the term monad, called the type term monad, TS� , over
a given category whose objects then intuitively represent the object of variables, and on the superceding level indeed
intuitively as type variables. Then TS� X , where X is the tuple of objects representing (type) variables, contains all terms
which we call type terms. We may write s�t for the type term �(s, t), which we call an arrow type term.

The signature �′ = (S′, �′) on level three then is based on S′ = TS��, i.e., the sorts on level three are those from
level one together with the constructed sorts, on level two appearing as terms (the type terms), added to those basic
sorts coming from level one.

For the operators in �′ it may sound natural to include all operators from � into �′ so that � ⊆ �′, but it is not always
desirable. If we consider the NAT signature on level one we obviously may have both 0 :→ nat and succ : nat → nat
included in the operators for NAT′. However, the unary operator succ, i.e., unary both on level one and level three, can
alternatively be (�-)abstracted to become a constant (0-ary) operator �succ1 :→ (nat�nat) on level three. Clearly, the
constant 0 :→ nat converts to �00 :→ nat, i.e., a constant on level remains as a constant on level three. Note also
that nat on level one is not the same as nat on level three. If we need to be strict, we should use e.g., nat′ for the
corresponding sort on level three.

We usually want to have S ⊆ S′, i.e., an S is embedded into S′, where nat maps to nat′, but not necessarily � ⊆ �′.
The situation involving the construction of �-terms, where ���′, is discussed more in detail in the subsection below.

Remark. For � = (S, �) on level one, S� can obviously be extended with further operators beyond just �. We could
e.g., include F : type → type semantically corresponding to a functor, as we do for description logic (see below)
when using the powerset functor to represent relations.

Remark. Note, in the mathematical notation for signatures according to [46], that the monoidal arrangement does not
embrace any structure related to the �-superceding level. That is, in [46] there is no clearly expressed anticipation of
applications in type theory.

Remark. Whereas the algebras A(�) of signatures �, involving assignments of sorts s to domains A(s) of A, are
standard according to universal algebra, the ‘algebra’ of the (�-)superseding type signature S� is not immediate since the
domain assigned to the sort type clearly cannot be just a set. There are several options for this, and these considerations
may go beyond traditional universal algebra. These discussions are outside the scope of this paper.

Church’s type constructor is in effect our �, so that (���) is his (��). An interpretation of Church’s � to be our type
is clearly less controversial, but for the interpretation of o there are a number of alternative intuitions. Church says, o
is the type of propositions, but at that point nothing is said about proposition. In fact, Church states the following: We
purposely refrain from making more definite the nature of the types o and �, the formal theory admitting of a variety of
interpretations in this regard. Of course the matter of interpretation is in any case irrelevant to the abstract construction
of the theory, and indeed other and quite different interpretations are possible (formal consistency assumed).

We will conclude this section with a discussion on natural language expressions involving modifiers and quantifiers,
and the possibility to understand and even encode these expressions more formally. Lotfi Zadeh frequently uses
expressions like “most Swedes are tall” and “there are more small balls than large balls in the box”. The difficulty to
handle these expressions in fuzzy logic is well-known, and unique solutions have not been presented in the literature.
We believe that unique solutions in fact do not exist, and here we will provide a brief view about possible encodings
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of such expression, or related subexpressions, in our three level exposition of signatures involving type constructors.
Intuitively it seems as modifiers are closely related to type constructors, or at least that modifiers are operators on level
three being specified using constructed types on level two. Quantifiers are more like abstractors of sentences, and it
may be anticipated that the formalization of quantifiers in this sense is similar to the formalization of the way � acts
expressions.

Let us have a closer look at modifiers. When we say “most a are b” we usually see a is specified by types of non-
Boolean character, whereas b is more seen as specified by a Boolean-like type. In this case “most” is about counting
something we loosely accept to be a’s that satisfy the condition that we semantically and individually understand to
be b. This counting is more like a process or procedure, or almost like an algorithm producing a degree of confidence
that indeed “most a are b”. It is, however, unclear whether or not “most” can be seen as a quantifier in some general
sense. If we say “there are more a’s than b’s in c”, or concretely, “there are more apples than pears in the fruit basket”,
this may be informative in the kitchen. Note also that “there are more apples than pears, but there are less Ingrid Marie
apples than Anjou pears in the fruit basket” is maybe more informative for advanced cooking. An expert on fruit might
also say "the Comice pear on the fruit plate looks more fresh than the Granny Smith apple". The fruit plate and fruit
basket clearly shows we are dealing with sets and even hierarchies of sets, in a sense to be semantically defined by and
within respective context. A basket can be seen as having more structure than a plate, and a plate is something more
that just a set.

Before proceeding with concretization of these examples, we need some prerequisites about type constructors and
the superceding signatures. For any unary type constructors �, � : type → type, we define the composed type
constructor � ◦ � : type → type by (� ◦ �)s = �(�s). For unary type constructors �, � : type → type, a type
transformation � from � to �, denoted � : � ⇒ �, if it exists, is assumed, for all s ∈ TS��, to be given by a unique
(constant operator) �s :→ (�s��s).

It is indeed tempting to view the type constructor � itself as a functor, but syntactically it obviously not a functor.
Further, we may want to assume that any f :→ (s�t) gives rise to a unique �f :→ (�s��t), and this intuitively
opens up the question e.g., preservation of composition, as we syntactically have not defined any composition of
constants, otherwise than using the application operator on level three.

Example 7.1. Hierarchies of sets, or sets of sets, sets of sets of sets, and so on, can be modelled by the ‘powerset’
type constructor P : type → type on level two, i.e., intuitively thinking that P indeed is a powerset functor, not
necessarily the ordinary powerset functor, over Set. We have to pay attention to ‘double powerset’ type constructors,
since in the case of composing powerset functor into a so-called double powerset functor we have two choices,
namely, composing the covariant powerset functor with itself or the contravariant powerset functor with itself. Note
that composing contravariant functors produces a covariant functor. We may denote the ‘contravariant powerset’ type
constructor by P : type → type. For the composition of the contravariant powerset type constructor with itself we
would expect A(P ◦ P) = A(P) ◦A(P).

We are now able to show how encoding a fruit basket and its content needs to make clear distinctions about what are
types on level two and which are the constants or operators in general on level three. It seems natural to say that Ingrid
Marie and Anjou are types of apples and pears, respectively, so we should then have IngridMarie, Anjou :→ type
on level two. This enables to have a specific apple apple0 and a pear pear0 as constants on level three if we include
apple0 :→ IngridMarie and pear0 :→ Anjou, or we may declare variables x and y according to x :: IngridMarie
and y :: Anjou. Then, both substitutions x := apple0 and y := pear0 make sense.

We should clearly include Fruit, Apple, Pear :→ type on level two, and then we can include Apple, Pear :→
Fruit on level three, but Apple and Pear as (constant) terms on level three must not be identified or confused with
Apple and Pear as terms on level two. Similarly, we can include I ngrid Marie :→ Apple and Anjou :→ Pear
on level three, where again IngridMarie on level three and IngridMarie on level two, and Anjou on level three and
Anjou on level two, must not be identified. On level three we are then allowed to include also that Apple and Pear are
of type Fruit.

For the typing of the fruit basket we have a number of options. We may see fruit baskets as always allowing any
fruits, or we may want to have different baskets for fruits in general, but also baskets specifically for apples, pears,
and so on. For the latter, we would first specify FruitBasket : type → type on level two as a type intuitively
being a powerset constructor, so that FruitBasket(Fruit), FruitBasket(Apple), FruitBasket(Pear) :: type,
as terms on level two, and then include AllFruitsBasket :→ P(Fruit), AppleFruitBasket :→ P(Apple) and
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PearFruitBasket :→ P(Pear) as a constant on level three. This captures the idea that a fruit basket is a set of fruits,
i.e., Fruit Basket :: P(Fruit).

When we start to use the basic constants and terms in connection with other operators providing counting we must
decide to have one or the other, and be very careful about not moving freely between respective definitions. In natural
language, this in fact happens frequently, and one person communicating with another is not always aware of which
typing is adopted. Even worse, if nobody is aware of distinct typing, each and everyone may shift to adopt definitions
from one typing to another. This is the main problem of natural language.

Counting fruits, apples or pears in the fruit basket is now something close to establishing cardinality of subsets
of apples and pears in a set of fruits, i.e., we might have operators cardApple : FruitBasket(Fruit) → nat
and cardPear : FruitBasket(Fruit) → nat on level three. Here we must assume to have nat on level one so
that nat :→ type is on level two. Similarly we may have cardIngridMarie : FruitBasket(Apple) → nat and
cardAnjou : FruitBasket(Pear) → nat for the cardinality of the subset of Ingrid Marie apples in a set of apples,
and the cardinality of Anjou pears in a set of pears.

Finally we need to include conversion operators so that an Ingrid Marie really is an apple, an Anjou really a pear,
and that apples and pears are fruits.

In summary, the typing on level two is

P, FruitBasket, FruitPlate : type → type
Fruit, Apple, Pear :→ type
IngridMarie, Anjou :→ type

nat :→ type

and on level three

AllFruitsBasket :→ FruitBasket(Fruit)
AppleFruitBasket :→ FruitBasket(Apple)
PearFruitBasket :→ FruitBasket(Pear)

Apple, Pear :→ Fruit
I ngrid Marie :→ Apple

Anjou :→ Pear
apple0, apple1, . . . :→ IngridMarie

pear0, pear1, . . . :→ Anjou
cardApple : FruitBasket(Fruit) → nat
cardPear : FruitBasket(Fruit) → nat

cardIngridMarie : P(Apple) → nat
cardAnjou : P(Pear) → nat

�Apple→Fruit : Apple → Fruit
�Pear→Fruit : Pear → Fruit

�IngridMarie→Apple : IngridMarie → Apple
�Anjou→Pear : Anjou → Pear

We now leave it to the reader to extend the example with various definitions for “there are more apples than pears,
but there are less Ingrid Marie apples than Anjou pears in the fruit basket”, where at least types and operators from
NATORD need to be included at level one. This may expectedly be done in a number of ways.

An additional subtlety arises from the intuitively different semantics of ‘set’, ‘plate’, and ‘basket’, which then also
calls for using type transformations between FruitBasket and P, and between FruitPlate and P, semantically
acting as a forgetful and/or flattening transformation:

�BasketT oSet
Fruit :→ (FruitBasket(Fruit)�P(Fruit))

�PlateT oSet
Fruit :→ (FruitPlate(Fruit)�P(Fruit))

In this context, note how a corresponding type transformation fromFruitBasket toFruitPlate, or fromFruitPlate
to FruitBasket, for that matter, is much less obvious, as the former may be represented simply by a action pouring
fruit from a plate into a basket, and the latter allow fruit from a basket to fall randomly out onto a plate.
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This example can then be extended further to work over selections of underlying categories with Set(Q) as the prime
example for such an underlying category.

7.2. �-Terms and fuzzy �-calculus

The three signature levels underlying the production of �-terms are the following.

1. the level of primitive underlying operations, with a usual many-sorted signature � = (S, �);
2. the level of type constructors, with a single-sorted signature S� = ({type}, {s :→ type|s ∈ S} ∪ {�: type ×

type → type});
3. the level including �-terms based on the signature �′ = (S′, �′) where S′ = TS��, �′ = {��

i1,. . .,in
:→

(si1� · · ·�(sin−1�(sin �s))|� : s1 × . . . × sn → s ∈ �} ∪ {apps,t : (s�t) × s → t}.
Here (i1, . . . , in) is a permutation of (1, . . . , n). Note also that level one operators are always transformed to con-

stants on level three. In traditional notation in �-calculus, substituting x by succ(y) in �y.succ(x) requires a renaming
of the bound variable y, e.g., �z.succ(succ(y)). In our approach we avoid the need for renaming. On level one,
and in the case of NAT, we have the substitution (Kleisli morphism) �nat : Xnat �� TNAT,nat(Xt)t∈{nat}, where
�nat(x) = succ(y), x being a variable on level one, and the extension of �nat is 
Xnat

◦ TNAT,nat (�t)t∈{nat} :
TNAT,nat(Xt)t∈{nat} �� TNAT,nat(Xt)t∈{nat}. On level three we have �nat′ : Xnat′ �� TNAT′,nat′
(Xt)t∈S′ , with �nat′(x) = appnat′,nat′ (�succ1 , x), x being a variable on level three, and 
nat′ ◦ TNAT′,nat′ �nat′
(appnat′,nat′ (�succ1 , x)) requiring no renaming.

At this point we have the crisp set of �-terms, given the term functor T�′ : SetS′ �� SetS′ . The sets of �-terms with
respect to each end sort s′ ∈ S′ are then represented by respective sets T�′,s′ (Xs)s∈S′ .

Fuzzy �-terms can now be introduced either using monad compositions, or allowing T�′ to be a functor over an
underlying category Set(Q), where Q typically is a quantale, but can also be a lattice or a Kleene algebra.

In [55], fuzzy �-calculus is treated differently as �-terms remain the classical ones, and as informally defined. The
underlying signatures are also crisp. Fuzzy aspects appear not until �-calculus is used as a basis for logic. This is
presented similar to the approach in [54], i.e., levels of signatures are not considered. The underlying basic terms are
crisp, i.e., arise from the many-sorted term functor over Set, even if the functorial construction of terms is not explicitly
mentioned. Fuzziness in [55] is therefore an ad hoc construction applied on the crisp and traditional view of �-terms.

7.3. Description logic

Widening the scope of relational structures begins with the observation that the category Rel of sets and relations is
isomorphic with the Kleisli category SetP of the powerset monad P over the category Set of sets and functions. Every
relation R ⊆ X × X is representable by a mapping �R : X �� PX , and every mapping � : X �� P X is representable
by a relation R� ⊆ X × X . It is easily seen that �R� = � and R�R = R.

Considering other monadsU over Set, and over other categories C, for that matter, widens the concept of “relation”
significantly, viewing it more like a “substitution”, and moreover, going beyond just Set enables to analyze various
attributions, like uncertainty and stochasticity, to be canonically integrated into terms and sentences under considerations
in chosen syntax for a logic.

The history of modal logic syntax goes back to Clarence Lewis and his work [56] dating back to the time after
publication of Principia Mathematica and at the footstep of Hilbert’s Lectures. The history of modal logic semantics
started with work by Rudolph Carnap in the 1940s and culminates with Saul Kripke’s semantical analysis of modal
logic [57]. Thereafter we witness a wide range of extensions to modal logic, e.g., in dynamic logic that was initiated by
Pratt [58] based on his lecture notes at MIT in 1974, again inspired by Floyd–Hoare’s logic for program description, also
adopted by Dijkstra in his predicate transformer semantics. Dynamic logic also mirrors to concepts within languages
in the sense of “automata and languages”, related, e.g., to Chomsky’s hierarchies, and also spilling over to Kleene
algebras and analysis of program construction in that fashion.

Another historical branch leading to description logic starts with Ross Quillian’s developments of his word concepts
[59] in the realm of memory models, and based on his PhD thesis in 1966 [60]. This restricts it to “hold only denotative,
factual information”, and “not a person’s plans for doing things”, in the latter exclusion referring to Jean Piaget’s
“schemata” [61]. Quillian is not explicitly saying whether “denotative” is syntax or semantics, but when taking also
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Quillian work as a historical background to description logic, “denotative” may be seen as embracing both “syntactic
(de)notation”, i.e., signature, and semantic denotation, either as such without syntax or as a semantic assignment
for syntactic elements. Piaget is weaker on the distinction between syntax and semantics. In his The Psychology of
Intelligence [61], Piaget writes about “thought psychology” and the psychological nature of logical operations, saying
that How far a psychological explanation of intelligence is possible depends on the way in which logical operations
are interpreted: Are the reflection of an already formed reality or the expression of a genuine activity? It may seem
that Piaget on “already formed reality” explicitly refers to logical semantics, and by “expression of a genuine activity”
to syntax, but this is not so. In fact, Piaget continues the logician then proceeds as does the geometer with the space
that he constructs deductively, while the psychologist can be likened to the physicist, who measures space in the real
world. Piaget almost wants to exclude logic from psychology, not include it.

Marvin Minsky introduced a knowledge representation schema with rule-based and logic-based formalisms [62]. In
order to represent these concepts he introduced ‘frames’, including descriptive information about how to understand
and use frames. Collections of such frames are organized in systems in which the frames are interconnected.

Developments then pass through description languages, and eventually ‘language’ is changed to ‘logic’. Description
logic (DL) is not a specific logic but rather seen as a family of logics being variants of the attributive concept description
language (ALC) [63], in turn based on the underlying formal frame description language (FL) [64] for KL-ONE [65]. In
[64], structured types are mentioned in connection with frames [62], but typing here is not explained in more formal type
theoretic fashion. Types become connected with concepts, and are treated similarly and intuitively as Quillian’s (nodes
that can be reached by an exhaustive tracing process, originating at its initial) patriarchical type nodes (together with
the total sum of relationships among these nodes specified by within-plane, token-to-token links) that are also interesting
from typing point of view, even if Quillian’s work does not touch upon typing or type constructors more formally, so
there are no historical remarks on distinctions to be found for concepts and concept types. Roles and relations were at
that time intuitively seen as relations between concepts, and not relations between their respective types.

We can now show how to connect modal operators, having relations as their semantics, to type constructors having
powerset functors as their semantics. We will make these situations explicit in particular for description logics and its
“existential roles” as modal operators. Typing the operators and quantifiers in this way also emphasizes the propositional
nature of description logic.

For the purpose of this section we will refer to notations in [63], and transforms that machinery into our categorical
framework for superceding signatures and related typing, eventually arriving at our enriched notions and properties
for DL.

We will start with providing some required formalism to ALC, which exists implicitly, and is mostly seen as folklore
for the DL community, but needs to be stated formally, before we can proceed with our categorical and term monadic
formalism. The need for this formalism, on the other hand, is not folklore, and is in fact, a major reason for this paper.

Firstly, we will examine the interpretation I = (DI , ·I ), where ·I maps every concept description to a subset of
DI . The use of the letter D for that universe is a bit unfortunate, since D is also used for concept descriptions, e.g., in
expressions like C

⊔
D, where D is not to be understood as the “D in DI”.

If C is a “concept”, the interpretation CI of that concept is a subset of DI , i.e., an element of the powerset PDI . This
means that PDI is the actual domain in the classical sense of domains as part of universal algebras. “Roles” R as relations
RI on the semantic side are then seen as subsets of DI × DI . This is equivalent to saying that RI is a mapping from DI
to PDI , which categorically is a morphism in the corresponding Kleisli category of the powerset monad P = (P, 	, 
)
over the category Set of sets and functions. Here 	 and 
 are natural transformations defined by 
X (B) = ⋃

B∈B B,
and 	X (x) = {x}. The morphism RI : DI ��PDI can be lifted to the morphism PRI : PDI ��PPDI . The inverse
relation R−1 is important in these respects as it is the actual relation used on the semantic side. It is easy to see that in fact

(∃R : C)I = {a ∈ DI |∃(a, b) ∈ RI : b ∈ CI} = 
DI (PR−1C)

Now we should be aware of related typing and variables selected as being of expected types. In [63], this situation
is unclear, as they assume the existence of two further disjoint alphabets of symbols, which are called individual
and concept variables. In signatures and terms over signatures, variables are not part of the alphabet, in the sense
of “alphabet” being the signature of sorts and operators. If � = (S, �) is a (many-sorted) signature, then variables
are specific terms and are always typed. Categorically, we have the category SetS , and a set of variables is an object
(Xs)s∈S in that category, and T� : SetS → SetS is the many-sorted term monad [50].
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If we speak of “individual concept” rather than “individual variable” we may use x, y, z as variables for individual
concepts, and X, Y, Z as variables for concepts. It then remains to decide how to type “concept” and “individual
concept”, and here we will need type constructors. We will again change language adopted in [63] by saying “concept”
instead of “individual concept”, and “powerconcept” instead of “concept”.

The key solution in this typing is that concept is a sort in the underlying given signature (on level one), and
then we need to construct a superceding signature, so that concept becomes a constant operator in that signature. A
type constructor P is then used to produce a new type Pconcept, which in its algebra will be assigned according to
A(concept) = DI and A(P(concept)) = PDI .

We are now in position to describe the simply typed description logic. Note that the “existential quantifier” in the
syntactic expression ∃R : C is actually more like an “R-modality” applied to the powerconcept C, and that the semantic
expression (∃R : C)I invokes the existential quantifier residing in the first-order logic for ZFC. In the following we
will show this more explicitly, i.e., that this “existential quantifier” is more of a modal operator, and that such modal
operators need not necessarily be equipped with semantics consisting only of relations a la Tarski.

Now let � = (S, �) be a signature, where S = {concept}. We may add constants like c1, . . . , cn :→ concept
already at this level, and it would be tempting to call these “syntactic concepts” with A�(ci ) ∈ A�(concept), where
A�(concept) could be equal to DI . However, we do not want to do that, as concepts and powerconcepts must reside
in the same signature. We therefore go to the superceding signature S�, so that concept :→ type becomes a constant
in S�. We now propose to include into S� a type constructor P : type → type, with an intuitive semantics of being the
powerset functor. Clearly, P(concept) is now the constructed type for “powerconcept”. Note that P(concept) is a term
on the �-superceding level, and a sort on S′, so as a candidate for its algebra we could consider A�′ (P(concept)) =
PA�′(concept) = PDI . Note how we refrain from making the distinction between P as a syntactic and semantic
object, and indeed we see this as a fundamental weakness of description logic, namely this intertwining of syntax and
semantics has not been properly resolved within the description logic community. A variable x ∈ XP(concept) is then a
“concept variable” in the sense of [63], and is also a ‘term’ in the sense of being an element of T�′,P(concept)(Xs)s∈S′ .

Now it is natural to include “constant concepts” c1, . . . , cn :→ concept, with concept having been shifted, from
being a term on the �-superceding level over to becoming a sort in S′. Thus c1, . . . , cn are (constant) terms as elements
of T�′,concept(Xs)s∈S′ , i.e., c1, . . . , cn ∈ T�′,concept(Xs)s∈S′ , and A�′ (ci ) ∈ A�′(concept) = DI .

Now “roles” are of the form r :→ (P(concept)�P(P(concept))), and we need further to include operators
	 :→ (concept�P(concept)) and 
 :→ (P(P(concept))�P(concept)) into �′.

Note how a concept c :→ concept is shifted to becoming a “one-point powerconcept” as represented by

appconcept,P(concept)(	, c)

Now the syntactic expression like “∃r.x”, i.e., a term of type P(concept) can be defined according to

∃r.x = appP(P(concept)),P(concept)(
, appP(concept),P(P(concept))(r, x))

and with the obvious algebras for 	 and 
, A�′ (∃r.x) will then be the expected one.
“Disjunction” and “negation” are then added as expected, i.e., � : P(concept) ×P(concept) → P(concept) and

¬ : P(concept) → P(concept), with the obvious algebras, and “universal quantification” can be added accordingly.
It is now explicit how P as a type constructor at the �-superceding level becomes the main building block for the

“monadic modality operator” ∃r . With the semantics of P intuitively being the powerset functor (on the �-superceding
level), we are more traditional, but nothing stops us from considering other set functors, or other endofunctors over
more elaborate categories than just Set.

Modeling uncertainty in this context provides an excellent example. The simply typed framework opens up many
possibilities to define fuzzy description logic. In [66,67] fuzzy DL is basically simply typed DL with the semantics of P
intuitively being extended to the many-valued powerset monad. It is really not “fuzzy logic for description” but rather
something like “fuzzy description logic”. A more canonic way to invoke uncertainty modeling is either to compose
the many-valued powerset monad with the term monad T�′ or to allow the term functor T�′ to, e.g., go over Set(Q),
where Q is a quantale.

We have shown how simply typed description logic, on one hand, reveals the modal nature of DL more clearly, and,
on the other hand, shows that the justification of speaking about the “existential quantifier” in DL is somewhat doubtful.
A more precise meaning of DL being a “sublanguage of first-order logic” and expressions being “variable-free” is now
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also given in this typing framework. Signatures are very explicit and therefore syntax and semantics are kept apart
more rigorously.

In these notations it is, given Example 7.1, also obvious how syntactic aspects of description logic can be extended to
involve more elaborate relations than just the one represented by powerset functors. Indeed, double powerset functors,
both covariant and contravariant can be used, as well as set functors for filters and ideals. Many other functors, e.g.,
representing relations in a generalized and broad sense can be used in this context, and their extension over various
underlying categories can be investigated.

8. Some notes on foundations and first-order logic

In this paper we adopt the view that set theory is the foundation for category theory, and not vice versa like in efforts
to show how category theory can be a foundation for mathematics [68]. The set-theoretic foundation for category theory
(see e.g., [69–71]) is mostly based on the Zermelo–Fraenkel set theory including the Axiom of Choice (ZFC), or the
von Neumann–Bernays–Gödel (NBG) set theory. We lean a bit more on the setup for ZFC, but this is of no major
importance for the main purpose of this paper.

Furthermore, category theory goes beyond using just sets and proper classes e.g., when accepting the use of the
set-theoretic universe. Such universes are clearly not unique as they can be axiomatized in various ways. So-called
Grothendieck universes were axiomatized within the Bourbaki group [25]. Any notion of a universe inevitably leads to
considerations for subsets of that universe, i.e., the powerset of the universe, thus leading to notions of conglomerates and
even higher-level conglomerates, thereby extending ZFC. The need for using conglomerates appears e.g., in formulation
of categories of categories, functor categories, and when using functor power series [26].

In this context we also need some clarifications concerning the distinction between meta languages and object
languages, in particular in discussions on first-order logic. It is important to note that the first-order logic which is
seen as a basis for foundations of mathematics does not have a formal metalanguage, but is a fons et origo formal
language where e.g., formal set theory does not exist at start. Therefore signatures and terms do not appear formally at
this level, nor do sentences. Hilbert often pointed out that first-order logic and set theory was developed in parallel, and
paradoxes were removed one by one as the theories evolved. Being at the end-point of ZFC developments, first-order
logic has matured to be the formal logic language of set theory, and set theory strengthens the formalism of first-order
theories. The boarder between object language and metalanguage was not always so clear throughout the course of
these developments that had as starting point Frege’s Begriffsschrift [72] and was culminating in Hilbert’s and Bernays’
Grundlagen [73,74]. Even worse, ‘provability of a sentence’ was by Gödel used again as a sentence like any other
sentence, so that everything about logical constructions related to ‘sentences’ basically come ‘into one bag’. Some
developments in modern type theory are also less careful in these respects.

For many-valued logic and non-classical logic extensions these observations and standpoints are then very important,
namely, the question about viewing first-order logic as the foundation of mathematics or as a formalism constructed
in a clear interaction between a metalanguage and a object language. There is a fundamental question about where
uncertainty in the end resides, and does it reside only in aspects of truth and truth values [75], or also more deeply e.g.,
within the signature and its operators, i.e., with terms as we strongly propose in this paper? Is uncertainty defined and
modelled in the object language, where the metalanguage is assumed to be crisp, or do we need to integrate uncertainty
modelling into the metalanguage? Our standpoint is that both are needed, namely monad compositions representing
uncertainty as modelled within the object language, and underlying categories capturing uncertainty aspects residing in
the metalanguage. In the end, application developments decide which type of uncertainty modelling is most appropriate.
Needless to say, all these aspect turn up in one form or another also in discussions on quantifiers and modifiers, and in
efforts to study the interaction between natural languages and formal languages.

9. Conclusions and future work

Our formal production of fuzzy terms is a subgoal of an overall ambition to describe a fuzzy logic framework more
generally as was done in [76] concerning institutions and in [77] concerning general logic. The underlying view is that
logics communicate and logic is individually adopted. Argumentation therefore happens in dialogue rather than in a
search for universal or canonic truth. First steps were presented in [10], and work is on-going concerning developments
of other building blocks of logic based on functors and monads.
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In these respects, it is important to define what is allowed and not allowed in logic constructions. Our view is
the following. A logic has its signature with sorts (types) and operators, and algebras providing the meaning of the
signature. Terms are constructed (syntactically and functorially) using operators in the signature, and the resulting
algebraic interpretations (semantics) of these terms can be provided accordingly. Substitutions and assignments have
to be handled with care, as we have shown in this paper. Sentences have terms as ingredients, and also need to be
equipped with corresponding meaning. Conglomerates of sentences can be formally treated. The ‘set’ of sentences is
like the ‘set’ of terms, once it has been fixed, we cannot go back and throw in new sentences even if we find some
method to define what appears to be new sentences. Entailment is the relation between these conglomerates representing
what we already know, and sentences representing knowledge we are trying to arrive at. Satisfaction as the semantic
counterpart to entailment provides the notion of valid conclusions. Axioms saying what we take for granted at start,
and inference rules say how we can jump to conclusions in a chain of entailments. ‘Soundness and completeness’
between the entailment and satisfaction relations is desirable but sometimes difficult to reach. We take here is that if
S is a sentence, � is entailment, then ‘provability of S’, expressed as �S, is not a sentence. By logic we then make a
distinction between logic as in ‘logic as foundation for mathematics’ and logic as in ‘mathematics as foundation for
logic’. Our future work on logic is then focused on ‘category theory as foundations for generalized general logic’, and
this generalized general logic we call substitution logic, as a continuation of developments as done in [10].

Real applications involving all the subtleties for uncertainty management are important and we find health and social
care as an application area that has always been aware of needs to be more precise about terminologies. In recent years,
formal logic is being recognized as valuable for providing enrichments to ontology. Processes and workflow have also
been in focus over decades, but languages for processes have basically not been of much concern. This is seen among
several national authorities for social and health care, and in their on-going efforts to provide various canonic and
generic process views.
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