2019-03-13 - SLPG Meeting

Date & Time
20:00 UTC Wednesday 13th March 2019

Teleconference Details
To join the meeting please go to https://snomed.zoom.us/j/471420169.
Further information can be found at SLPG meeting information

Goals
- Review actions from last meeting
- Proposed enhancements to template language
- Proposed new language features for mapping

Attendees
- Chair: Linda Bird
- Project Group: Daniel Karlsson, Michael Lawley, Yongsheng Gao, Anne Randorff Højen, Ed Cheetham, Rob Hausam

Agenda and Meeting Notes

<table>
<thead>
<tr>
<th>Description</th>
<th>Owner</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome and apologies</td>
<td>Linda Bird</td>
<td></td>
</tr>
</tbody>
</table>
| Actions from last week | Linda Bird | • Actions from last week:
• Consider new syntax to support proposed expression template use case
• Consider new syntax to support proposed map use case |
| Template Syntax | Linda Bird | Use cases: New concept development, querying based on template matching, and template-based modeling transformation
New requirements |
1. Constrain values across 2 or more replacement slots
 - 2 replacement slots must have the same value, different values, subsumed values, or not subsumed values.
 - **Example A** - A clinical finding, with 2 role groups with the same morphology, and finding sites that do not subsume each other
 - **Template**
       ```
       [ [ +id ] ]:
       { 116676008 |Associated morphology| = [ [ +id @morphology ] ],
       363698007 |finding site| = [ [ +id (<< Body structure MINUS << $findingSite2 ) @findingSite1 ] ],
       ( 16676008 |Associated morphology| = [ [ +id @morphology ] ],
       363698007 |finding site| = [ [ +id ("MINUS << $findingSite1 @findingSite2" ] )
       ]
       }
       ```
 - **Valid Expression** (Definition of 16027391000119109 |Bone cyst of bilateral tibias (disorder)|)
       ```
       64572001 |Disease| : {
       116676008 |Associated morphology| = 66954000 |Bone cyst|,
       363698007 |finding site| = 719491009 |Bone structure of right tibia|
       (116676008 |Associated morphology| = 66954000 |Bone cyst|,
       363698007 |finding site| = 719492002 |Bone structure of left tibia|
       )
       ```
 - **Example B** - A clinical finding, with one or more role groups in which the morphology is always the same, and no 2 finding sites subsume each other.
 - **Template** - 3 role groups with 3 sites: site[1], site[2], site[3] /// site[1,2]
     ```
     [ [ +id ] ]:
     { [..!@group1] |Finding site| = [ [ +id ("MINUS Site1 SELF") ] @site constraint ( [n] != << $site[n] ) ]
     [Associated morphology] = [ [ +id ($morphology SELF) ] @morphology constraint ( [n] = << $morphology[n] ) ]
     ```
 - **Valid Expression** (Definition of 208510002 |Multiple fracture of clavicle, scapula and humerus (disorder)|)
       ```
       64572001 |Disease| : {
       363698007 |Finding site| = 85050009 |Bone structure of humerus|
       116676008 |Associated morphology| = 5468008 |Fracture of multiple sites of bone|,
       363698007 |Finding site| = 51299004 |Bone structure of clavicle|,
       116676008 |Associated morphology| = 5468008 |Fracture of multiple sites of bone|,
       363698007 |Finding site| = 79601000 |Bone structure of scapula|,
       116676008 |Associated morphology| = 5468008 |Fracture of multiple sites of bone|,
       363698007 |Finding site| = 773134001 |Bone structure of multiple body regions|
       116676008 |Associated morphology| = 771485007 |Fracture of multiple bones|,
       ```

2. Default value for replacement slot
 - Default value for authoring and template-driven modelling transformations
 - **Example A** - Default finding site of 72673000 |Bone structure|
 - **Template**
       ```
       { [ [ +id ] ]:
       { [Finding site] = [ [ +id (<< 72673000 |Bone structure|) @site default (72673000 |Bone structure (body structure)|) ] ]
       ```

3. Definition status of a replacement slot
 - Specifying whether the value used in a replacement slot be primitive or defined
 - **Example A** - When proximal primitive modelling, the focus concept must be a primitive concept
 - Template - Requires use of more expressive query language with filters
     ```
     [ [ +id (<< 64572001 |Disease| { c.definitionStatus = primitive } ) ] ]
     ```
 - **Valid Expression**
       ```
       195967001 |Asthma (disorder)|
       ```

4. Definition status of a templated expression
 - Specifying the definition status of a templated expression
 - **Template**
     ```
     [ [ +tok (""":""""") ] ] [ [ +id ] ] : { [Finding site] = [ [ +id ] ]
     ```
 - **Valid Expression**
       ```
       128272009 |Disorder of lower respiratory system| : 363698007 |Finding site| = 39607008 |Lung structure|
       <<< 128272009 |Disorder of lower respiratory system| : 363698007 |Finding site| = 39607008 |Lung structure|
       ```
5. Attributes used in repeating role groups

- Constraining the set of attributes that appear in a repeating role group

Example A - The same set of attributes must appear in each instance of a repeating role group (with optional attributes)

- **Template** - using allOrNone
 - `[[+id]: [1..* @group1 allOrNone ($site, $occurrence)]]`
 - `[[[1..1] |Associated morphology| = [[+id @morphology]], [0..1] |Finding site| = [[+id @site]], [0..1] |Occurrence| = [[+id @occurrence]]]`

- **Valid Expression** - Injury of head, neck and chest
 - `[[(Disease)]]:
 - (Associated morphology) = [Injury], (Finding site) = [Head structure]
 - (Associated morphology) = [Injury], (Finding site) = [Neck structure]
 - (Associated morphology) = [Injury], (Finding site) = [Chest structure]`

Example B - Some of the optional attributes must either always or never appear in each instance of a repeating role group

- **Template** - using "allOrNone"
 - `[[+id]: [1..* @group1 allOrNone($morph)]]`
 - `[[1..1] |Method| = [[+id]], [0..1] |Direct morphology| = [[+id @morph]], [0..1] |Procedure site - Direct| = [[+id]], [0..1] |Using device| = [[+id]], [0..1] |Has intent| = [[+id]]]`

- **Valid Expression** - Closure of skin by suture
 - (Procedure):
 - (Method) = [Closure - action], (Procedure site - Direct) = [Skin structure], (Using device) = [Surgical suture, device]

- **Valid Expression** - Core needle biopsy of skin using ultrasonic guidance
 - (Procedure):
 - (Method) = [Ultrasound imaging - action], (Procedure site - Direct) = [Skin structure], (Has intent) = [Guidance intent]
 - (Method) = [Biopsy - action], (Procedure site - Direct) = [Skin structure], (Using device) = [Core biopsy needle, device]

- **Valid Expression** - Toilet and suture of wound
 - (Procedure):
 - (Method) = [Surgical toilet - action], (Direct morphology) = [Wound]
 - (Method) = [Closure - action], (Direct morphology) = [Wound], (Procedure site - Direct) = [Skin structure], (Using device) = [Surgical suture, device]

Executing maps

Linda Bird

Proposed extension to ECL to support the execution of maps

- Example use cases
 - Mapping from international substance concepts to AMT substance concepts
 - Anatomy structure and part association reference set - e.g. find the anatomical parts of a given structure

- Potential syntax to consider

 - **Functional**
 - `mapTarget ([Anatomy structure and part association refset], << [Upper abdomen structure])`
 - `mapSource ([Anatomy structure and part association refset], << [Liver part])`

 - **Dot notation**
 - `([Anatomy structure and part association refset]: [ReferencedComponent] = << [Upper abdomen structure]) . [mapTarget]`
 - `([Anatomy structure and part association refset]: [mapTarget] = << [Upper abdomen structure]) . [referencedComponent]`

 - **Filters**
 - `([Anatomy structure and part association refset] ([[referencedComponent] = << [Upper abdomen structure]])) . [mapTarget]`
 - `([Anatomy structure and part association refset] ([mapTarget = << [Upper abdomen structure]])) . [referencedComponent]`
 - `^ ([Anatomy structure and part association refset] ([mapTarget = << [Upper abdomen structure]]))`
Returning attributes

Michael Lawley

Proposal from Michael:

- Currently ECL expressions can match (return) concepts that are either the source or the target of a relationship triple (target is accessed via the 'reverse' notation or 'dot notation', but not the relationship type (ie attribute name) itself.

 For example, I can write:

 \[
 << 404684003|Clinical finding| : 363698007|Finding site| = <<66019005|Limb structure| \\
 << 404684003|Clinical finding| . 363698007|Finding site|
 \]

 But I can't get all the attribute names that are used by \(<< 404684003|Clinical finding|\)

 - Perhaps something like:
 - ?? R.type ?? \(<< 404684003 |Clinical finding|\)
 - This could be extended to, for example, return different values - e.g.
 - ?? |Simple map refset|.|maptarget| ?? \(^{|\}Simple map refset| AND < |Fracture|\)

URI Standard

Linda Bird

- Finalize and publish language and language instance URIs

Query Language - Summary from previous meetings

Linda Bird

Examples: version and language

- \(<< 64572001 |Disease| ([term = "*heart*"])) VERSION http://snomed.info/sct/900000000000207008 /version/20180131\)
- \(<< 64572001 |Disease| ([synonym = "*heart*"]) VERSION http://snomed.info/sct/900000000000207008/version/20180131\)
- \(<< 64572001 |Disease| ([FSN = "*heart*"]) VERSION http://snomed.info/sct/900000000000207008/version/20180131\)
- \(<< 64572001 |Disease| ([preferredTerm = "*heart*"]) VERSION http://snomed.info/sct/900000000000207008/version/20180131, LANGUAGE W\)
- \(<< 64572001 |Disease| ([acceptableTerm = "*heart*"]) VERSION http://snomed.info/sct/900000000000207008/version/20180131, LANGUAGE Y\)
- \(\{ [term = "*heart*"]) VERSION http://snomed.info/sct/900000000000207008/version/20180131, LANGUAGE W\)
- \(\{ [term = "*heart*"]) VERSION http://snomed.info/sct/900000000000207008/version/20180131, LANGUAGE Y\)
- \(\{ [term = "*heart*"]) VERSION http://snomed.info/sct/900000000000207008/version/20180131, LANGUAGE W\)

Notes

- Allow nested version, language
- Scope of variables is inner query

Examples: where

- \(\{ X MINUS Y WHERE X = * , Y = * [[term = "*heart*"]]) VERSION http://snomed.info/sct/900000000000207008/version/20180131, LANGUAGE W\)

Notes

- Allow nested where, version, language
- Scope of variables is inner query
Keywords for Term-based searching:

- **D.term**
 - D.term = "*heart*
 - D.term = wild:"*heart*"
 - D.term = regex:"*heart*"
 - D.term = match:"hear att"
 - D.term = (sv) wild:"*heart*"
- **D.languageCode**
 - D.languageCode = "en"
 - D.languageCode = "es"
- **D.caseSignificanceId**
 - D.caseSignificanceId = 900000000000448009 [entire term case insensitive]
 - D.caseSignificanceId = 900000000000017005 [entire term case sensitive]
 - D.caseSignificanceId = 900000000000020002 [only initial character case insensitive]
- **D.caseSignificance**
 - D.caseSignificance = "insensitive"
 - D.caseSignificance = "sensitive"
- **D.typeId**
 - D.typeId = 900000000000003001 |fully specified name|
 - D.typeId = 900000000000013009 |synonym|
 - D.typeId = 900000000000550004 |definition|
- **D.type**
 - D.type = "FSN"
 - D.type = "fullySpecifiedName"
 - D.type = "synonym"
 - D.type = "textDefinition"
- **D.acceptabilityId**
 - D.acceptabilityId = 900000000000549004 |acceptable|
 - D.acceptabilityId = 900000000000548007 [preferred]
- **D.acceptability**
 - D.acceptability = "acceptable"
 - D.acceptability = "preferred"

Additional Syntactic Sugar

- **FSN**
 - FSN = "*heart"
 - D.term = "*heart", D.type = "FSN"
 - D.term = "*heart", D.typeId = 900000000000003001 [fully specified name]
 - FSN = "*heart" LANGUAGE X
 - D.term = "*heart", D.type = "FSN", D.acceptability = * LANGUAGE X
 - D.term = "*heart", D.typeId = 900000000000003001 [fully specified name], acceptabilityId = * LANGUAGE X
- **synonym**
 - synonym = "*heart"
 - D.term = "*heart", D.type = "synonym"
 - D.term = "*heart", D.typeId = 900000000000013009 [synonym]
 - synonym = "*heart" LANGUAGE X
 - D.term = "*heart", D.type = "synonym", D.acceptability = * LANGUAGE X
 - D.term = "*heart", D.typeId = 900000000000013009 [synonym], (D.acceptabilityId = 900000000000549004 [acceptable] OR D.acceptabilityId = 900000000000548007 [preferred]) LANGUAGE X
- **synonymOrFSN**
 - synonymOrFSN = "*heart"
 - synonym = "*heart" OR FSN = "*heart"
 - D.term = "*heart", (D.type = "synonym" OR D.type = "fullySpecifiedName")
 - synonymOrFSN = "*heart" LANGUAGE X
 - D.term = "*heart", (D.type = "synonym" OR D.type = "fullySpecifiedName"), D.acceptability = * LANGUAGE X
- **textDefinition**
 - textDefinition = "*heart"
 - D.term = "*heart", D.type = "definition"
 - D.term = "*heart", D.typeId = 900000000000550004 [definition]
 - textDefinition = "*heart" LANGUAGE X
 - D.term = "*heart", D.type = "definition", D.acceptability = * LANGUAGE X
 - D.term = "*heart", D.typeId = 900000000000550004 [definition], D.acceptabilityId = * LANGUAGE X
- **Unacceptable Terms**
 - (D.term = "*heart") MINUS (D.term = "*heart", D.acceptability = * LANGUAGE X)
Language preferences using multiple language reference sets

- LRSs that use the same Language tend to use 'Addition' - i.e. child LRS only includes additional acceptable terms, but can override the preferred term
 - E.g. Regional LRS that adds local dialect to a National LRS
 - E.g. Specialty-specific LRS
 - E.g. Irish LRS that adds local preferences to the en-GB LRS
- LRSs that define a translation to a different language tend to use 'Replacement' - i.e. child LRS replaces set of acceptable and preferred terms for any associated concept
 - E.g. Danish LRS that does a partial translation of the International Release
 - 999999 [Danish language reference set] ELSE [GB English reference set]

<table>
<thead>
<tr>
<th>Other topics</th>
<th>Linda Bird</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Any other topics?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confirm next meeting date/time</th>
<th>Linda Bird</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The next SLPG meeting will be held in 2 weeks at 20:00 UTC on Wednesday 27th March.</td>
</tr>
</tbody>
</table>