
© Copyright 2019 International Health Terminology Standards Development Organisation

SNOMED CT
SQL Practical Guide

Publication date: 2019-11-25

Web version link: http://snomed.org/sqlpg

SNOMED CT document library: http://snomed.org/doc

This PDF document was generated from the web version on the publication date shown
above. Any changes made to the web pages since that date will not appear in the PDF.
See the web version of this document for recent updates.

http://snomed.org/doc

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 1

Table of Contents
1. Introduction..4

2. Objectives, Audiences and Uses ..5

3. SNOMED CT Example Database...6

4. Database Design...9

4.1. Essential Reference Information ...9

4.2. Release Type Options...9

4.3. Data Type Options..12

4.4. Database Table Naming...14

4.5. Database Table Design...17

4.6. Enabling Versioned Views ..19

4.7. Enabling Subtype Testing ..29

4.8. Composite Views ..30

4.9. Stored Procedures ...46

5. Creating and Populating a SNOMED CT Database..56

5.1. Creating the Database..56

5.2. Creating Tables for Components...56

5.3. Creating Tables for Reference Sets ...59

5.4. Importing Release Files..63

Appendix A: Building the SNOMED CT Example Database...67

A.1 Download the SNOMED CT Example Database Package ..67

A.2 Download the Release File Package ..67

A.3 Instructions for Mac OS Users...68

A.4 Instructions for Windows Users..73

A.5 Using MySQL Workbench to Query SNOMED CT..87

A.6 Overview of the SNOMED CT MySQL Database ...92

A.7 MySQL Reference Data..97

Appendix B: Obtaining SNOMED CT Release Files..99

Appendix C: Release Types and Versioned Views...100

C.1. Practical Uses for Versioned Views ...101

C.2. Release Type Support for Versioned Views ..101

C.3. Common Mistakes with Snapshot Generation...102

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 2

Web browsable version: http://snomed.org/sqlpg

SNOMED CT Document Library: http://snomed.org/doc

© Copyright 2019 International Health Terminology Standards Development Organisation, all rights reserved.

This document is a publication of International Health Terminology Standards Development Organisation, trading as SNOMED International.
SNOMED International owns and maintains SNOMED CT®.

Any modification of this document (including without limitation the removal or modification of this notice) is prohibited without the express
written permission of SNOMED International. This document may be subject to updates. Always use the latest version of this document
published by SNOMED International. This can be viewed online and downloaded by following the links on the front page or cover of this
document.

SNOMED®, SNOMED CT® and IHTSDO® are registered trademarks of International Health Terminology Standards Development Organisation.
SNOMED CT® licensing information is available at http://snomed.org/licensing. For more information about SNOMED International and
SNOMED International Membership, please refer to http://www.snomed.org or contact us at info@snomed.org.

This guide provides a simple and practical example of how a relational database can be used to enable
effective access to the content and features of SNOMED CT. The guide includes tested SQL scripts for loading
release files into a relational database, searching the terminology and querying the terminology for concepts
that meet simple but useful constraints.
The primary purpose of this document is to enhance understanding of the logical design of SNOMED CT and to
provide practical ways to access the key features of SNOMED CT in a widely understood programming
language. For more scalable and performant approaches to implementing SNOMED CT please visit SNOMED
International's Github repository - e.g. https://github.com/IHTSDO.

http://snomed.org/doc
http://snomed.org/licensing
http://www.ihtsdo.org/
mailto:info@ihtsdo.org
https://github.com/IHTSDO

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 4

1. Introduction

Summary
This practical guide outlines key requirements for enabling effective access to SNOMED CT and illustrates some of
the options for meeting these requirements using a freely available SQL database. The rationale for using SQL as an
illustrative example is that this is a widely understood way to access structured data that can be readily applied to
SNOMED CT release files.

The approaches and options documented in the guide provide working examples of some essential SNOMED CT
terminology services. However, the primary purpose of these examples is to enhance understanding and not to
recommend SQL as a way to deliver large scale versions of these services. A range of more advanced technologies,
including those used in SNOMED International Tools, are able to deliver more scalable implementations of the
required services.

Background
SNOMED CT is made available to licensees as a package of tab-delimited text files. The format of these files is
specified in the Release File Specification (Sections 4 Component Release Files Specification and 5. Reference Set
Types). These release files provide a standard way to distribute SNOMED CT content and derivatives but they do not
offer a direct way to provide user-friendly access to the terminology.

This guide documents a worked SQL example that loads the SNOMED CT release files into a database designed to
enable practical access to terminology content. This worked example enables exploration of the types of
terminology required for effective delivery of terminology services.

Purpose
The primary purpose of this document is to enhance understanding of the logical design and release file structure
of SNOMED CT and to provide practical ways to access the key features of SNOMED CT in a widely understood
programming language. For more scalable and performant approaches to implementing SNOMED CT please visit
SNOMED International's Github repository - e.g. https://github.com/IHTSDO.

For more details on the purpose of the document see Section 2. Objectives, Audiences and Uses.

SNOMED International also provides a range of tools that enable access to SNOMED CT content. These
include a SNOMED CT Browser through which to explore the terminology and a range of other open source
tools that enable programmatic access to terminology content. For further details see SNOMED
International Tools or visit the SNOMED International GitHub repository to access open source projects
supporting a range of terminology service requirements.

ÿ

1.

2.

3.

4.

Limitations

The programming code that this guide contains and/or refers to is only made available to provide
illustrative examples of key points related to the design, accessibility and use of SNOMED CT.
It is licensed under the Apache 2 licence and is not certified to be suitable for use in a production
system.
The code has been developed to work in a freely available open source relational database (MySQL
- https://www.mysql.com) to make it accessible to all SNOMED CT licensees without imposing
additional costs.

The code may need modification to work in other database environments.
Other database environments may also support additional features which enable
alternative approaches not described in this guide.

The use of SQL in this example is intended to enhance understanding of the structure and does not

imply that SQL is recommended for use production systems that deliver terminology services.

\

https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT
https://confluence.ihtsdotools.org/display/DOCGLOSS/SQL
https://confluence.ihtsdotools.org/display/DOCGLOSS/terminology+service
https://confluence.ihtsdotools.org/display/TOOLS/SNOMED+International+Tools
https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT
https://confluence.ihtsdotools.org/display/DOCGLOSS/licensee
https://confluence.ihtsdotools.org/display/DOCRELFMT
https://confluence.ihtsdotools.org/display/DOCRELFMT/4+Component+Release+Files+Specification
https://confluence.ihtsdotools.org/display/DOCRFSPG/5.+Reference+Set+Types
https://confluence.ihtsdotools.org/display/DOCRFSPG/5.+Reference+Set+Types
https://confluence.ihtsdotools.org/display/DOCGLOSS/terminology+service
https://github.com/IHTSDO
http://snomed.org/browser
https://www.snomed.org/snomed-ct/software-tools
https://www.snomed.org/snomed-ct/software-tools
https://github.com/IHTSDO
http://www.apache.org/licenses/LICENSE-2.0.txt
https://www.mysql.com

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 5

1.
2.
3.
4.

1.

2.

3.

1.
2.
3.
4.

2. Objectives, Audiences and Uses

Objectives
The key objectives of this guide are to:

Enhance understanding of the logical design of SNOMED CT;
Demonstrate the feasibility of effective terminology access;
Enable terminology access for practical exercises;
Provide a starting point for further development.

Audiences
There are three distinct target audiences for this guide:

Designers and developers
The guide provides practical examples of the ways in which features in SNOMED CT can be accessed
using a widely understood technology;
It demonstrates services that designers and developers should consider including in their
terminology server developments;
It can also be used to inform terminology server requirements for system access to SNOMED CT.

People seeking practical ways to access SNOMED CT content and reference sets:
The demonstrator documented in this guide provides ways to access SNOMED CT content and
reference sets using simple SQL queries.
This type of access can complement the use of a SNOMED CT browser or other specific tools by
enabling customizable access to specific collections of terminology content.

Anyone interested in SNOMED CT who is seeking a practical example of accessing the terminology in ways
described in other specifications and guides:

Although many SNOMED CT tools deliver user-friendly services for well-established use cases, some
use cases require customized services that are not readily available from existing tools.
For example, the full version of the demonstration database allows queries to be written that report
the history of changes that impact a defined set of SNOMED CT components.

Each section of the guide includes an indication of its applicability to each of these audiences.

Ways of Using this Guide
The guide is designed to be used in any of the following ways to suit the needs of different audiences.

As a set of step-by-step instructions for a practical demonstration project
As a source of ideas and advice to inform other development approaches
As a source of practical examples that illustrate and validate general guidance
As background reading when exploring technical options

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 6

•

•

•

•

3. SNOMED CT Example Database

Role of the Example Database
A SNOMED CT example database is used throughout this guide to illustrate ways to meet a various requirements for
practical access to SNOMED CT. It is not essential for readers to create or have access to an instance of the example
database but for some people access to a practical example of the database will be valuable.

Some readers of the guide may wish to setup and use a working version of this database to explore simply to
provide themselves with another way to explore SNOMED CT. Others may use the example database to test out the
efficacy and performance of the techniques described in the guide. Those with existing knowledge and experience
of SQL may also wish to implement and test alternative approaches while reading this guide. Readers may also
prefer to adapt the guidance in this document to another database environment with which they are already more
familiar. Most of techniques used in the example database are standard features of SQL and that are supported by
many relational database environments. Therefore, it should be fairly straight forward to apply or adapt the SQL
examples in the guide to other database environments. On the other hand readers who are familiar with databases
with more powerful capabilities than MySQL may see opportunities to use additional features to replace some
techniques used in the example database.

Requirements for Creating the Database
A computer system running Windows or MacOS or a Unix-based environment like Linux or Ubuntu for which
MySQL Server 8.0.x if available.
Installation of MySQL Community Edition Server (which is used to build and provide access to the database)
and MySQL Community Edition Workbench (which provides a user interface through which the
database can be conveniently explored). Both of these are freely available with standard installation
packages for all the most widely used operating system environments include Windows, MacOS and other
Unix-based environments such as Linux and Ubuntu.
Those using Windows will also need to install a Perl processor, but fortunately the Strawberry Perl
environment is also freely available, so there is no additional software to be purchased.
At least 10.5 Gb of disk storage space during the build process. Assuming the release package archive file
and the expanded release package folder are deleted the storage requirement reduces to 6.5Gb after the
build has completed 1 .

Creating the Example Database
Those readers wishing to create their own instance of the example database should refer to Appendix A: Building
the SNOMED CT Example Database. That appendix provides instructions on the steps required to configure MySql
and then to create, populate and experiment with the example SNOMED CT database. These instructions are
supported by installation scripts for Windows and MacOS, which have been tested to work with the standard
installations of MySQL 8.0.x Community Server for those environments.

Functionality of the Example Database

Overview
The SNOMED CT example database is designed to provide an effective and flexible way to access SNOMED CT
content imported from a SNOMED CT release package. Access is provided through running SQL queries against
tables containing the data and predefined database views that allow data to be selected in ways that recognize
versioning information and where appropriate combine related data from different tables and views.

https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+release+package

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 7

•
•

•
•
•

Feature Description

Database tables

created for data in all

full and snapshot

release files

Separate database tables are created for the full and snapshot release of each distinct component and reference set
type. Consistent design principles are applied to these tables to match the data structure, data type and function
requirements.

Import of all full

release files

The full release makes it possible to use SQL queries to access to the complete history of all SNOMED CT components
and reference sets from the first release of the terminology in January 2002 up to the most recent release.

Import of all snapshot

release files

The snapshot release provides rapid access to the current view of the terminology, without the need for queries to
explicitly exclude earlier versions.

Examples of

computed current

snapshot views

As the example database imports the snapshot release files into separate tables, there is no requirement for a
computed snapshot views. However, computed current snapshot views derived from some of the full release tables
are included in the example database. These views provides practical illustrations of the way to derive a current
snapshot from the full release. They also allow comparisons of performance and output between SQL queries run on
the snapshot table and the same queries run on the computed snapshot view.

Configurable

retrospective

snapshot views

The example database includes two configurable snapshot views of every full release database table. This allows
SQL queries to be refer to and compare the current snapshot and snapshot and one or two earlier dates. A simple
configuration procedure is included to allow the retrospective snapshot dates of each view to be changed.

Configurable delta

views

The example database includes three configurable delta views of every full release database table. This allows SQL
queries to be refer only to versions of a component added or changed between two specified dates. A simple
configuration procedure is included to allow the delta data ranges (start and end times) of each view to be changed.

Language

configuration of views

The example database includes a simple configuration procedure to specify the preferred display language or
dialect. This is dependent on the languages in the release files, so with the International Edition only the options en-
US and en-GB can be used. However, when used with National Editions that include translated descriptions and an
appropriate language reference set this feature can be readily configured to support those additional language
settings. The language configuration setting can be applied separately to different snapshot views allowing or can be
switched as part of an sequence of queries to enable multilingual query results.

Consistent access to

all components and

reference set

members

The same configurable snapshot and delta views are available for all component types and reference set members
and these views follow a consistent naming convention. This means individual components and reference sets can
be queried in a consistent manner. It also provides a foundation for composite views that bring together data from
the same snapshot view of different related tables. The features below illustrate the practical application of this
principle.

Language refset

dependent views of

descriptions and

concepts

Built-in views allow concepts to be displayed using either their fully specified name or preferred synonym in a
specified language or dialect. Other built-in language dependent descriptions views include:

All the active synonyms of each concept (including or excluding the preferred synonym).
All active synonyms associated with active concepts (this view is particularly useful for
text searches).

Integrated views of

relationships and

descriptions

The database also features built-in views that provide access to information about relationships between concepts.
These views include synonym and fully specified name variants for each of the following:

The id and term of all subtype children of specified concept.
The id and term of all supertype parents of a specified concept.
Defining relationships as the id and term of the source, type and destination concepts
followed by the relationship group number.

All references to id and term refer to a pair of columns in the output of the view. The id is the concept identifier,
depending on the view the term is either the fully specified name or the preferred synonym.

Important Note

The example database in its current form should be considered as a read-only resource. Although an SQL
databases enables addition, deletion and updating of data, the design of the example database is not
intended to be used for editing the release data in any way. The reasons for this limitation include the
conditions of the SNOMED CT license as well as lack of support for the formal processes required for
authoring, change management and component versioning. Those interested in tools that support editing
of SNOMED CT content and reference sets should refer to information on SNOMED International Software
and Tools.

\

https://www.snomed.org/snomed-ct/software-tools
https://www.snomed.org/snomed-ct/software-tools

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 8

Full text term

searches

The database uses a full-text index to allow searches by words within a term independent of the order in which those
terms appear. Example queries demonstrate this search facility as well as a simple way to display the closest
matches first. Other more technical search approaches using complete, pattern and regular expression matching can
also be readily applied.

Rapid subtype testing

using a transitive

closure table

The database import process includes a step that builds a transitive closure file and loads this into an indexed
database table. This enables rapid testing of whether one concept is a subtype descendant or supertype ancestor of
any other concept 2 .

Procedure

demonstrating

selection of concepts

based on expression

constraints

This illustrates an approach to testing expression constraints. The current version of the procedure is limited to
constraints including one focus concept with one or two attribute value constraints 2 .

Procedure

demonstrating term

search limited to a

specified hierarchy

This illustrates an approach to searching using full text search with the returned results limited to concepts that are
subtypes of a specified concept. For example, there are more than 600 synonyms that contains both "mitral" and
"valve". However if this search is limited to subtypes of a concept (e.g. procedure, body structure, observable,
physical object etc.) it returns substantially fewer matches 3 .

1 These storage requirements are for the International Edition Release for 2019-07-31. More storage may be
required by other Editions with substantial additional national or local extension content.

2 Only the current snapshot view of the transitive closure table is available. Therefore this feature is not available
for retrospective snapshots. [a b]

3 Only the current snapshot view of the transitive closure table is available. Therefore subtype testing is not
available when searching retrospective snapshots.

Note

This summary of the functionality the database should be interpreted in the scope and context of the its
intended use as a demonstrator and learning tool. It is possible that the database may have other practical
applications for some use cases, but it is not regarded as a robust or high performance solution suitable
for large scale use. Rather it is designed to confirm the feasibility implementing some of the feature of
SNOMED CT and to stimulate others to use and improve upon the ideas and approaches described in the
guide.

ÿ

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 9

•

•

•

•

4. Database Design
This section discusses some of the points that should be considered when designing a relational database to
provide access to SNOMED CT. It explains the rationale for decisions taken while designing the SNOMED CT example
database. It also identifies some other options which, while not implemented in the example database, are worth
considering.

4.1. Essential Reference Information
Before designing a database to accommodate SNOMED CT, you should refer to the SNOMED CT Release File
Specification. This provides the authoritative documentation about the way that SNOMED CT content is
distributed to licensees. The list below picks out the key sections of this guide for those developing solutions that
provide access to SNOMED CT.

Section 3 Release Types, Packages and Files contains the follow chapters that provide essentially information
about SNOMED CT Release Packages

Section 4 Component Release Files Specification contains the authoritative documentation about the
structure of release files containing data that represents SNOMED CT components (concepts, descriptions and
 relationships).

Section 5 Reference Set Release Files Specification contains the authoritative documentation about the
structure of release files that represent SNOMED CT reference sets.

4.2. Release Type Options

Using Full and Snapshot Releases

Meeting Version Access Requirements
A key decision when designing any solution intended to provide to SNOMED CT is whether it should support import
files from the full release, the current snapshot release or both. The determining factor when considering these
options is the range of SNOMED CT versions that to which the solution needs to provide access. Table
4.2-1 identifies the release type import options that can be used to meet particular requirements to for access to
different sets of SNOMED CT versions. The release type options are summarized in the sections following this table.

Table 4.2-1: Release Type Import Options to Support Version Access Requirements

Requirements for access to SNOMED CT

versions

Release Type Import Options Notes

Access to the current version of SNOMED CT

only

Recommended: Import
Snapshot Release Only

Access to the current version of SNOMED CT

and full details of changes since the previous

version

Recommended: Import Full
and Current Snapshot
Release
Minimal: Import Current
and Previous Snapshot
Release
Alternative: Import Full
Release Only

Full details of changes since the previous version
requires access to the previous versions of all
components that were changed in the current
release. As a result the same release type import
options apply to both these sets of requirements 1 .Access to the current version of SNOMED CT

and one previous version

https://confluence.ihtsdotools.org/display/DOCRELFMT/SNOMED+CT+Release+File+Specifications
https://confluence.ihtsdotools.org/display/DOCRELFMT/SNOMED+CT+Release+File+Specifications
https://confluence.ihtsdotools.org/display/WIPRELFMT/3+Release+Types%2C+Packages+and+Files
https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+Release+Package
https://confluence.ihtsdotools.org/display/WIPRELFMT/4+Component+Release+Files+Specification
https://confluence.ihtsdotools.org/display/DOCGLOSS/concept
https://confluence.ihtsdotools.org/display/DOCGLOSS/description
https://confluence.ihtsdotools.org/display/DOCGLOSS/relationship
https://confluence.ihtsdotools.org/display/DOCRELFMT/5+Reference+Set+Release+Files+Specification
https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+reference+set
https://confluence.ihtsdotools.org/display/DOCGLOSS/full+release
https://confluence.ihtsdotools.org/display/DOCGLOSS/snapshot+release

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 10

•

•

•
•
•
•

•
•

•
•

•
•
•
•
•

•

•
•
•

•
•

•

Access to the current version of SNOMED CT

and more than one previous version

Recommended: Import Full
and Current Snapshot
Release
Alternative: Import Full
Release Only

If access to more than two versions is required, it is
easier to support access to all versions. As a result
the same release type import options apply to both
these sets of requirements 2 .

Access to the current version of SNOMED CT

and all previous versions

Import Current Snapshot Release Only

Description
A single set of tables is created for all the release files that need to be imported.
Data is imported into these table from the current snapshot release.
The database is optimized by appropriate additional indexes.
Access to common combinations of data from multiple tables may be facilitated by creating database views,
procedures and functions.

Advantages
Simple solution which performs well.
Supports to access the current snapshot release and current delta view.

Disadvantages
No access to previous snapshot views.
Cannot access to the previous state of components in the current delta view.

Import Current and Previous Snapshot Releases

Description
Two sets of tables are created for all the release files that need to be imported.
Data from the current snapshot release is imported into one of these sets of tables
Data from the previous snapshot release is imported into the other set of tables.
The database is optimized by appropriate additional indexes.
Access to common combinations of data from multiple tables may be facilitated by creating a sets of
database views, procedures and functions applicable to each set of tables.
Access to information about changes to data between the two snapshot release may be facilitated by
additional views, procedures and functions that combine or compare data from the two versions.

Advantages
Simple duplication of the single snapshot view which performs well.
Supports to access the current and previous snapshot releases and current and previous delta views.
Supports access to previous state of components in the current delta view.

Disadvantages
No access to snapshot views prior to the previous version.
Heavy use of disk space as a result of duplication of rows that are identical in both snapshots. Each snapshot
takes more than 80% of the space required by the full release.
Not extensible because this approach is not realistic for multiple versions due to a linear increase in
redundant use of disk space.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 11

•
•
•
•

•

•

•
•
•
•

•

•
•
•
•

•

•

•
•

•
•

•

Import Full Release Only

Description
A single set of tables is created for all the release files that need to be imported.
Data is imported into these table from the full release.
The database is optimized by appropriate additional indexes.
Access to data in specific versions is facilitated by virtual snapshot views that can be accessed in the same
way as database tables 3 .
Access to common combinations of data from snapshot views of tables may be facilitated by creating
database views, procedures and functions.
Access to information about changes to data between any two snapshot release may be facilitated by
additional views, procedures and functions that combine or compare data from those versions.

Advantages
Access to the complete release history of all versions of a SNOMED CT Edition.
Efficient use of disk space requiring only 20% more disk space than importing a single snapshot release.
Able to access snapshot views for any date.
Able to access delta views for any date range.

Disadvantages
Virtual views performs less well than a native database tables because the content of a view is the result of
query on a database table.

Import Full and Current Snapshot Releases
Two set of tables are created for all the release files that need to be imported.
Data is imported into these table from the full release and current snapshot release.
The database is optimized by appropriate additional indexes.
Access to data in specific versions is facilitated by virtual snapshot views that can be accessed in the same
way as database tables 3 .
Access to common combinations of data from the snapshot tables or from the snapshot views of full release
tables may be facilitated by creating database views, procedures and functions.
Access to information about changes to data between any two snapshot release may be facilitated by
additional views, procedures and functions that combine or compare data from those versions.

Advantages
Access to the complete release history of all versions of a SNOMED CT Edition.
High performance access to the current snapshot view using the snapshot release table rather than a virtual
snapshot view.

This is a significant advantage as the current snapshot is the most commonly used view.
Able to access snapshot views for any date.
Able to access delta views for any date range.

Disadvantages
Requires approximately 80% more disk space than only importing the full release.

However, unlike the use of multiple snapshot tables. this disk space increase with each new release is
determined by numbers of additions and changes rather and the only redundancy is a single version
snapshot.

https://confluence.ihtsdotools.org/display/DOCGLOSS/snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+Edition
https://confluence.ihtsdotools.org/display/DOCGLOSS/snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+Edition

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 12

Importing the Delta Release
There is no need to import the delta release when importing either the full or snapshot releases. This is because
rows that have changed in a release can be identified using their effectiveTimes. So it is possible to extract the most
recent delta view from a snapshot release and all delta views can be extracted from a full release.

There is one potential use case for importing a delta release and that is to update a database containing the
previous release to current release. A full release table for a specified previous release date can be updated by
simply inserting all the rows from a the relevant delta release file for the period starting immediately after the
previous release date up to and including a new release date.

In practice, it may be more efficient to start with an empty database and import the latest full release. However, the
delta release update option may be useful where there is requirement to retain the operational integrity of the
database during the update process. Future plans for more frequent or "continuous" updates to the SNOMED CT
International Edition may also benefit from updates using delta releases of small number of changes or additions.

1 In theory, the first requirement for full details of changes could be met by a trimmed version of the previous
snapshot from which rows that are unchanged in the current snapshot have been removed. However, this would
complicate both the import process and the process or querying the data.

2 In theory, requirements for a limited set of previous version views could also be met by importing multiple
snapshot releases. However, importing a snapshot uses roughly 80% of the disk space. Performance advantages
may in some cases make this approach worthwhile for two versions but it is not a scalable approach.

3 For further information on snapshot views see 4.6. Enabling Versioned Views. [a b]

4.3. Data Type Options
All data in SNOMED CT release files conforms to one of a set of data types defined in the Release File Specification (3
.1.2 Release File Data Types). The database tables that will hold release file data should be designed in ways that
consistently map the general data type characteristics in the SNOMED CT specification to appropriate data types in
the should be represented consistently using an appropriate data type supported by the database.

Table 4.3-1 shows how each release file data type is represented in the MySQL example database. Possible
alternative data type mapping are shown where appropriate with notes explaining the rationale for the preferred
choice 1

Table 4.3-1: Mapping from Release Files Data Types to MySQL Data Types

Release File

Data Type

Description DB Data

Type

Possible

Alternatives

Notes

The example SNOMED CT database is an example of the "Import Full and Snapshot Release" option. It
includes a current snapshot table and a full release table for each of the release files. The current snapshot
is accessed directly through the snapshot tables, while all snapshot views for any date between 31 January
2002 and the current release date are accessed as dynamic views. It also provides access to delta views
showing changes between any two dates since the first release of SNOMED CT.

|

https://confluence.ihtsdotools.org/display/DOCGLOSS/delta+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/delta+view
https://confluence.ihtsdotools.org/display/DOCRELFMT/3.1.2+Release+File+Data+Types
https://confluence.ihtsdotools.org/display/DOCRELFMT/3.1.2+Release+File+Data+Types

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 13

•

SCTID A SNOMED CT identifier, between 6 and 18
digits long, as described in 6.2 SCTID
Representation.

BIGINT VARCHAR(18)

CHAR(18)

Performance tests comparing BIGINT (a 64-bit
Integer) and VARCHAR(18) show that BIGINT
consistently performs better for almost all types
of required access to the SNOMED CT database. A
test set of queries took 66% of the time to
complete with some tasks completed in less than
half the time.

CHAR(18) would also be a possible storage form
but requires 2 bytes more than storage per SCTID
than BIGINT. Whereas on average VARCHAR uses
less storage because most SCTIDs are significantly
shorter than the maximum length of 18
characters.

UUID A Universally Unique Identifier is a 128-bit
unsigned generated using a standard
algorithm.

UUIDs are represented as
strings of hexadecimal
characters split by - characters
as points specified by the UUID
standard.

CHAR(36) BINARY(16)

CHAR(32)

Performance tests comparing CHAR(36) and
BINARY(16) indicated that CHAR(36) consistently
performs significantly better than BINARY in the
types of queries used in the SNOMED CT
database.

BINARY only uses 16 bytes compared with 36
required for CHAR(36).

CHAR(36) enables UUIDs to be read and rendered
without requiring additional processing to match
the standard string representation of UUIDs.

CHAR(32) would also be a possible storage form
but requires processing to and from the standard
string representation of UUIDs.

Integer A 32-bit signed integer. INT Some integer columns may use far fewer than 32-
bits (4 bytes) and in future some might require
more. However, currently no integer values used
in release files exceed the range of a 32-bit signed
integer (except SCTIDs which are treated
separately). Therefore, for consistency and
simplicity the INT options is applied to all integer
columns.

String UTF-8 text of a specified length.

VARCHAR uses less storage for strings of limited
length.

TEXT offers flexible solution for longer strings.

CHAR could be used for strings of known length.

If length is specified as no more than 200
characters

VARCHAR(
length)

CHAR(length)

If length is unspecified and could potentially
be more than that 200 characters

TEXT

Boolean A Boolean value, represented as one of two
possible integer values (1 = true, 0 = false).

TINYINT CHAR(1) TINYINT uses only a single byte and it thus the
most economic way to store a 0 or 1 value.

Although CHAR(1) could be used it offers no
advantages.

All strings values use utf8mb4
character set.

|

https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+identifier
https://confluence.ihtsdotools.org/display/WIPRELFMT/6.2+SCTID+Representation
https://confluence.ihtsdotools.org/display/WIPRELFMT/6.2+SCTID+Representation
https://confluence.ihtsdotools.org/display/DOCRELFMT/UUID+(data+type)
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://confluence.ihtsdotools.org/display/DOCRELFMT/Integer+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/String+(data+type)
https://confluence.ihtsdotools.org/display/DOCGLOSS/UTF-8
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 14

1.

2.

3.

4.

Time A date and time format expressed as a text
string in line the basic representation
specified in the ISO 8601 standard.
(i.e. YYYYMMDD or YYYYMMDDTHHMMSSZ)

DATETIME TIMESTAMP

VARCHAR(14)

CHAR(8)

DATETIME allows date (and or time) storage in
most compact form (5 bytes in MySQL 8.x).
Comparison, differences, and flexible output
formatting are also supported.

TIMESTAMP also supports date and time, only
using 4-bytes. However, this does not permit
dates after 2038 and the extra byte in DATETIME
completely removes the limitation.

VARCHAR(14) would allow date and time in ISO
format YYYYMMDDhhmmdd but requires more
storage and performs less well than DATETIME.

CHAR(8) would be sufficient for dates without
times. This is all that is currently required for the
effectiveTime field but potential uses of the Time
data type would not be covered. It also uses 3
bytes per date for storage when compared with
DATETIME.

1 The process for determining the data types used in the example database was as follows:

Identify the range of data types capable of representing all possible values based on the characteristics of
the general data types defined in the SNOMED CT specifications.
For the SNOMED CT data types used in primary keys (SCTID, UUID and Time), assess candidate datatypes
based on the performance of views and queries that use these keys for retrieval and database joins.
For the string data type, consider different options for columns of different lengths and where relevant
indexing requirements differ.
Where the above factors do not distinguish between options, choose the data type that uses the least
storage space.

[a b]

4.4. Database Table Naming

Introduction
The International Edition of SNOMED CT contains three release types (Full, Snapshot and Delta) and each of these
release types include 20 files (2019-07-31 release). Each of those files has a distinct structure representing either a
type of component (e.g. concept, relationship or description) or a type of reference set. SNOMED CT Extensions
contain additional files and most of these conform to the same structure as one of the International Edition release
files 1 .

When designing a database to accommodate SNOMED CT release files, decisions need to be made about the names
to give to each of the database tables. One option is to give the tables exactly the same names as the release files
they represent. However, analysis of the release file naming conventions indicates that these conventions are not
directly applicable to table names.

SNOMED CT release file naming conventions include some elements that represent information about the
provenance, language and release date of a specific file. This information is useful and in some cases essential as a
way of distinguishing releases files. However, this information is neither essential nor helpful when naming tables
that may contain data from different SNOMED CT versions, editions and extensions.
The release file naming conventions do however include some essential elements that relate directly to the
specification of the nature and structure of the data they contain. The following sections provide a summary of the

If you are applying this guide to a different SQL implementation, you may need to modify some or all of
these data type mappings based on assessment of the performance and storage characteristics of the
available data types 1 .

ÿ

https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://en.wikipedia.org/wiki/ISO_8601
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/UUID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 15

release file naming conventions, identify the elements in release file names that are relevant to database table
naming and describe a set rules that can be applied to derive consistent table names from release file names.

Release File Naming
All SNOMED CT release file are named in accordance with the 3.3.2 Release File Naming Convention. The naming
conventions result in names that can be decomposed into parts as illustrated by examples with color coding in Tabl
e 4.4-1.

Table 4.4-1: Illustrations of the Release File Naming Conventions

Description of the pattern or file illustrated Example release file names

General pattern 2 prefix_[refsetPattern]componentType_[refsetType][extensionName]releaseType[-lan
guage]_country_releaseDate.txt

International edition full release concepts file for
2019-07-31

sct2_Concept_Full_INT_20190731.txt

International edition snapshot release english
descriptions file

sct2_Description_Snapshot-en_INT_20190731.txt

Spanish extension full release spanish descriptions
file

sct2_Description_SpanishExtensionFull-es_INT_20190430.txt

International edition snapshot release extended
maps reference set file

der2_iisssccRefset_ExtendedMapSnapshot_INT_20190731.txt

Spanish extension full release spanish language
reference set file

der2_cRefset_LanguageSpanishExtensionFull-es_INT_20190430.txt

International edition snapshot release english
language reference set file

der2_cRefset_LanguageSnapshot-en_INT_20190731.txt

File Name Element Relevance to Table Names
Table 4.4-2 identifies the elements of the release file naming pattern that are relevant to the naming of the database
tables containing content from those files. It also outlines the reasons why some elements that form an important
part of the release file names can or should be omitted from the relevant database table names.

Table 4.4-2: Relevance of File Name Pattern Elements to Database Table Names

Filename
Element

Relevan
t to
Table
Name

Explanation

prefix No The prefix sct2 or der2 distinguishes components from derivatives (refsets). This information is present in the
componentType and refsetType.

refsetPatte
rn

No This information relates to the datatypes of additional columns in the file and the table. The table structure includes
the required columns so there is no reason to include this in the table name.

componen
tType

Yes This is essential as it indicates either the type of components represented in the table or that this is a reference set

refsetType Yes This is essential to distinguish the tables representing different reference set types (and not present in other file
names).

extensionN
ame

No This is not required as data from extensions files should be included in the same tables as the equivalent data from the
international release. Individual records maintained in extensions can be distinguished by moduleId

releaseTy

pe

Yes This is essential if importing data from both the full and snapshot release. However, since this is a fundamental
grouping, it is probably sensible for this to be a prefix to the table name. Otherwise with long table names this key
distinction may be easier to miss. A short prefix denoting release types with a convention that also allows database
views to be named in a similar consistent manner is recommended.

language No This is not applicable to the description table name. All descriptions should be accommodated in a single table with
the languageCode column indicating the language of the associated term. Similarly it is not applicated to a language
reference set table name. All language reference sets should be accommodated in a single table with the refsetId
column indicating the language and dialect of each language preference.

https://confluence.ihtsdotools.org/display/DOCRELFMT/3.3.2+Release+File+Naming+Convention

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 16

•

•

Filename
Element

Relevan
t to
Table
Name

Explanation

country No This is not required in the table name as the country or other point of origin of the components and reference set
members is indicated by the moduleId.

releaseDat
e

No This is not required as data from many releases is included in the full release file tables. In the case of the snapshot it
would be possible to include the date of the snapshot in the table name. However this is not recommended because,
as noted in 4.2. Release Type Options multiple sets of tables representing different snapshot releases multiply the
required storage capacity required.

Deriving Table Names from Release File Names
The analysis in Table 4.4-2, identifies three elements in the release file name that are relevant to table names. There
are various ways in which table names could be derived by combining these elements and one of these is shown in T
able 4.4-3. The end result (shown in Table 4.4-4) is a set of table names that:

Are as short as possible while clearly identifying:
The release type from which they are derived
The component or reference set type specification to which they conform

Are not specific to a particular SNOMED CT release or edition.

Table 4.4-3: Rules Applied to Release File Names to Generate Table Name for the Example
Database

Start with file name pattern prefix_[refsetPattern]componentType_[refsetType][exte
nsionName]releaseType[-language]_country_releaseDa
te.txt

Remove element that are not required componentType[_refsetType]releaseType

Make release type the prefix releaseType_componentType[_refsetType]

Abbreviate the prefix to 4 characters

(full or snap)

rtyp_componentType[_refsetType]

.

Table 4.4-4: Results of Mapping Release File Names to Example Database Table Names

List of Release File Name List of Corresponding Table Names

in the Example Database

Note

The rules shown here are those applied to the example SNOMED CT database. Alternative table naming
patterns may be preferred by those developing their own SNOMED CT database. However, is important is
to ensure that the table naming pattern should be consistently applicable to all release files. Furthermore,
it also should be readily applicable to any additional reference set types that may be added to future
releases of the International Edition (or included in other SNOMED CT editions and or extensions).

ÿ

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 17

•
•

sct2_Concept_Full_INT_20190731.txt

sct2_Description_Full-en_INT_20190731.txt

der2_cRefset_AssociationFull_INT_20190731.txt

der2_cRefset_AttributeValueFull_INT_20190731.txt

der2_ciRefset_DescriptionTypeFull_INT_20190731.txt

der2_iisssccRefset_ExtendedMapFull_INT_20190731.txt

der2_cRefset_LanguageFull-en_INT_20190731.txt

der2_ssRefset_ModuleDependencyFull_INT_20190731.txt

der2_cissccRefset_MRCMAttributeDomainFull_INT_20190731.txt

der2_ssccRefset_MRCMAttributeRangeFull_INT_20190731.txt

der2_sssssssRefset_MRCMDomainFull_INT_20190731.txt

der2_cRefset_MRCMModuleScopeFull_INT_20190731.txt

sct2_sRefset_OWLExpressionFull_INT_20190731.txt

der2_cciRefset_RefsetDescriptorFull_INT_20190731.txt

der2_Refset_SimpleFull_INT_20190731.txt

der2_sRefset_SimpleMapFull_INT_20190731.txt

sct2_Relationship_Full_INT_20190731.txt

sct2_StatedRelationship_Full_INT_20190731.txt

sct2_TextDefinition_Full-en_INT_20190731.txt

sct2_Concept_Snapshot_INT_20190731.txt

sct2_Description_Snapshot-en_INT_20190731.txt

... list continues for all Snapshot release files ... list continues for all the snap_

tables

1 A few files in an extension may conform to a reference set that has been defined by the organization responsible
for that extension.

2 Pattern elements in square brackets [] are optional depending on file type.

4.5. Database Table Design

Introduction
Every SNOMED CT release file conforms to a formal specification which defines the names and data types of each of
the columns in the file. These specifications are subsections of the Release File Specification.

4.2 File Format Specifications
5.2 Reference Set Types

The preceding chapters addressed the representation of SNOMED CT data types in a database and naming the
individual tables into which release data will be loaded. This section considers two remaining design decisions
related to database table design, names to be applied to the columns in the tables and keys and indexes that
should be added to support speedy access to the data.

Column Names
The column names used in the release files are the formally specified names and these should be used as the
column names in the relevant database tables.

https://confluence.ihtsdotools.org/display/DOCRELFMT/4+Component+Release+Files+Specification
https://confluence.ihtsdotools.org/display/DOCRELFMT/4.2+File+Format+Specifications
https://confluence.ihtsdotools.org/display/DOCRELFMT/5.2+Reference+Set+Types

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 18

1.
2.
3.
4.

•

Column Data Types
Each column in a database table should be assigned a data type by consistently by applying defined mappings
between data types defined in SNOMED CT specifications 1 and those available in your database environment 2 .

Additional Column Options
In most cases there should be no need to add additional columns to the release tables. However, as discussed in 4.4
.3. Snapshot View Options, some approaches to optimization of snapshot views may require an additional column.
If any additional columns are added they should comply with the following good practice guidelines.

Additional columns must:

only be added for technical purposes such as optimizing database performance;
only be added after the columns that represent standard SNOMED CT release files data;
be given names that clearly distinguish them from the columns that represent data from the release files;
not be presented to a user of the database in ways that suggest they are part of the terminology.

Primary Keys
All database tables representing SNOMED CT release data should use a primary key that combines id and
effectiveTime.

This combined primary key is:
Essential for full release tables as id alone is not unique.
Recommended for tables representing data from a snapshot release for overall consistency 3 .

Additional Indexes
Additional indexes are required to support rapid access to interrelated data (for example the descriptions and
relationships associated with an identified concept). Table 4.5-1 outlines the rationale for each of the additional
indexes used to improve performance of specific tables in the SNOMED CT example database 4 . Further indexes or
revisions of these indexes may also be useful to further enhance performance. Table 4.5-1 is also intended as a
starting point for the developing SNOMED CT solutions in other database environments. However, the benefits of
adding particular indexes will depend on the characteristics of the database server. Therefore, some of these
indexes may not be required and other indexing strategies may be more effective at improving performance.

Table 4.5-1: Additional Indexes for Specific Tables

Database Table Index Name Index Columns Rationale for this Index

(full or snap)_description description_con
cept

conceptId Find descriptions for concept.

description_lang conceptId,languag
eCode

Find descriptions with specific language code for concept.

description_ter
m

term (fulltext) 5 Search for terms.

(full or snap)_relationship relationship_des
t

destinationId,typeI
d,sourceId

Find concepts with relationships of a specified type of which a
specified concept is the destinationId (value or supertype) or find
relationships with a specific combination of destination, type and
source.

relationship_sou
rce

sourceId,typeId,de
stinationId

Find concepts with relationships of a specified type of which a
specified concept is the destinationId (defined concept or subtype)
or find relationships with a specific combination of source, type and
destination.

(full or snap)_statedRelations

hip

statedRelationsh
ip_dest

destinationId,typeI
d,sourceId

Find concepts with stated relationships of a specified type of which a
specified concept is the destinationId (value or supertype) or find
relationships with a specific combination of destination, type and
source.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 19

•

statedRelationsh
ip_source

sourceId,typeId,de
stinationId

Find concepts with relationships of a specified type of which a
specified concept is the destinationId (defined concept or subtype)
or find relationships with a specific combination of source, type and
destination.

(full or snap)_textDefinition textDefinition_co
ncept

conceptId Find text definitions for concept.

textDefinition_la
ng

conceptId,languag
eCode

Find text definitions with specific language code for concept.

textDefinition_te
rm

term (fulltext) Search for terms in text definitions.

(full or snap)_refset_
[REFSETTYPE]

These indexes are applied to all
refset tables

[REFSETTYPE]_c referencedCompon
entId

Find rows in any reference set of type [REFSETTYPE] that refer to a
specified referenced component.

[REFSETTYPE]_rc refsetId,referenced
ComponentId

Find rows in an identified reference set of type [REFSETTYPE] that
refer to a specified referenced component.

(full or snap)_refset_Extended

Map

ExtendedMap_m
ap

refsetId,mapTarget Find map records in a specified mapping reference set for a
particular mapTarget. Find all concepts that have a map to a
particular mapTarget in a specified mapping reference set.

(full or snap)_refset_SimpleM

ap

SimpleMap_map refsetId,mapTarget Find map records in a specified mapping reference set for a
particular mapTarget. Find all concepts that have a map to a
particular mapTarget in a specified mapping reference set.

(full or snap)_refset_MRCMAtt

ributeDomain

MRCMAttributeD
omain_dom

domainId Find attribute domain information for a specified domain.

1 SNOMED CT data types are defined in section 3.1.2 Release File Data Types of the SNOMED CT Release File
Specifications.

2 See recommendation on the approach to data type mapping in section 4.3. Data Type Options.
3 A primary key consisting only of the id is a potential alternative for tables representing data from a snapshot

release.
4 To avoid slowing the data import process additional indexes are not added to the database tables until after all

text files have been imported.
5 Full text indexes for terms allow effective searching. However, unless the database is correctly configured, short

words, abbreviations and stop words may prevent effective indexing of common clinical terms. For further
details refer to A.7.1 Required MySQL Configuration Settings.

4.6. Enabling Versioned Views
As noted in 4.2. Release Type Options, SNOMED CT data can be imported into database tables from snapshot
release files, from full release files or from both these sets of release files. The objective of importing the data into
the database is to provide effective access to useful views of that data. In practical terms this means facilitating
access to some or all of the views summarized in Table 4.6-1.

Table 4.6-1: Summary of Versioned Views of SNOMED CT Components and Reference Set
Members

View Content Description Use Cases Value

Current

Snapsho

t

The most recent version of each SNOMED CT
component and reference set member.

All practical uses of the current version of
SNOMED CT

Essential for
any use of
SNOMED CT

https://confluence.ihtsdotools.org/display/DOCRELFMT/3.1.2+Release+File+Data+Types
https://confluence.ihtsdotools.org/display/WIPRELFMT/SNOMED+CT+Release+File+Specifications
https://confluence.ihtsdotools.org/display/WIPRELFMT/SNOMED+CT+Release+File+Specifications

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 20

•

•

•

•

•

•

•

Retrosp

ective

Snapsho

t

The most recent version of each SNOMED CT
component and reference set member released prior to
a specified earlier snapshot time.

A baseline against which to review of
changes to SNOMED CT during or after
installing a new release.
Review of health records taking account of
the version of SNOMED CT at the time the
data was recorded.
Comparative analysis of health record data
collected at different times taking account
of changes to SNOMED CT.

Valuable

Most

Recent

Delta

View

The latest version of each SNOMED CT component and
reference set member added, changed or inactivated in
the most recent release. Typically, all these items with
have an effectiveTime equal to the most recent release
date. However, in cases where interim releases are
made available between releases, the most recent delta
view may be specified as including all items with an
effectiveTime after the previous major release date.

Identification of changes to SNOMED CT
arising from the most recent release.

Valuable as
an indicator
of recent
changes

Other

Delta

Views

The versions of each SNOMED CT component and
reference set member added, changed or inactivated
after a specified delta start time and at or before a
specified delta end time.

Identification of changes to SNOMED CT
over a period of time.

Useful for
longer term
monitoring
of changes.

Delta

Views

with

Details

of

Changes

The content of a specified delta view combined with the
retrospective snapshot view of SNOMED CT
components and reference set members in the delta
view at the specified delta start time.

Reviewing full details of changes to
SNOMED CT between two releases or over
a period of time.
Assessing and managing the impact of
updates to SNOMED CT.

Required for
effective
change
managemen
t

Table 4.6-2 summarizes the way in which different release type options affect the ability to access particular
snapshot and delta views of SNOMED CT data. Importing the snapshot release supports direct access to the current
snapshot view and query access to the most recent delta view. The full release provides access to all snapshot and
delta views but is likely to perform slightly less well with the current snapshot view. Importing both full and current
snapshot releases offers all the advantages of importing the full release and also provides direct access to the
current snapshot view. This combined option requires more storage capacity but may be worthwhile because the
current snapshot is likely to be the most commonly used view.

Table 4.6-2: Summary of Versioned View Access Capabilities Depending on Release Types
Imported

Release Types Imported

Views Supported Current Snapshot Full Full & Current Snapshot

Current Snapshot View Direct Query Direct

Retrospective Snapshot Views Not supported Query Query

Most Recent Delta View Query Query Query

Other Delta Views Not supported Query Query

Delta Views with Details of Changes Not supported Query Query

The following subsections explore specific mechanisms that can be used to deliver these views in a relational
database.

See also Appendix C: Release Types and Versioned Views

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 21

4.6.1. Versioned View Queries

Current Snapshot Queries
Extracting the current snapshot from a full release table requires a query that can identify the rows with the most
recent effectiveTime for each uniquely identified component or reference set member. The general form of a
current snapshot view query is shown below.

General Snapshot Query - Replace full_tableName with Name of a Full Release Table

select * from full_tableName tbl
 where tbl.effectiveTime = (select max(sub.effectiveTime) from full_tableName
sub
 where sub.id =
tbl.id);

Including Other Constraints in a Snapshot Query
It may be tempting to write queries that add criteria specific to a particular query within the structure of a general
snapshot query. However if this is done, it must be done with care because additional conditions may cause
incorrect results.

Additional criteria to be applied to snapshot view must be added to the outer query to deliver the expected results.
Otherwise they may inadvertently exclude the most recent component from the snapshot and thus leading to a
misleading result.

For example, in the following query the check for the active status is included in the nested query. This will
lead to the most recent active version of each component being selected. The result of this query will
therefore include an earlier active version of any component that is now inactive. A similar issue may also
occur with other criteria 1 .

General Snapshot Query - With Error Due to Added Condition in Nested Query

select * from full_tableName tbl
 where tbl.effectiveTime = (select max(sub.effectiveTime) from
 full_tableName sub
 where sub.id =
tbl.id and sub.active=1);

\

The query below corrects the error in the shown above. This query will return components that are active
in the current snapshot view. It will not return any components that are inactive in the current snapshot.

General Snapshot Query for Active Components in the Snapshot

select * from full_tableName tbl
 where tbl.active=1 and tbl.effectiveTime = (select max(sub.effectiveTi
me) from full_tableName sub
 where sub.id =
tbl.id);

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 22

Retrospective Snapshot Queries
Queries for earlier snapshot views require an additional condition so that only versions with an effectiveTime that is
equal to or earlier than (i.e. less than) the date of the snapshot. In this case, it is correct to include this condition in
the nested query because the objective is to constrain the maximum effectiveTime to that the subquery returns.
This ensures that the outer query does not return component versions added after the specified snapshot time.

Retrospective Snapshot Query for Snapshot as at 2019-01-31

select * from full_tableName tbl
 where tbl.effectiveTime = (select max(sub.effectiveTime) from full_tableName
sub
 where sub.id = tbl.id
and sub.effectiveTime<='20190131');

Most Recent Delta View Query
The most recent delta view is usually considered to be all the rows in a table with an effectiveTime equal to the
release date. 2 The general form of a query for the most recent delta view is shown below. Note that this query can
be applied either to full release tables or the current snapshot release tables.

Most Recent Delta View Query for 2019-07-31 release. Replace tableName with Name of a Full or

Snapshot Release Table for 2019-07-31 Release

select * from tableName tbl
 where tbl.effectiveTime = '20190731';

Specified Period Delta View Query
A more general purpose approach to delta views is to include all changes between two specified dates (or times).
This can be applied to the period between two releases or to a defined period during which multiple changes may
have occurred to the same component. The general form of a delta view query for a specified period is shown
below.

General Most Recent Delta View Query - for Change After 2019-01-31 and On or Before 2019-07-31

select * from full_tableName tbl
 where tbl.effectiveTime > '20190131' and tbl.effectiveTime <= '20190731' ;

Delta View with Details of Changes
It is also possible to create an enhanced delta view that not only shows which components have changed but allows
the pre-change state of that component to be seen. From a practical perspective this simply combines a delta view
for a range of dates with a retrospective snapshot view for the delta view start date.

Note

This query requires the effectiveTime to be greater than the startDate and less than or equal to the
endDate. This avoids double counting items in two consecutive periods. This means that ranges can be
specified to start on one release date and end on another release date without counting changes that
occured on the first release date.

ÿ

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 23

Delta View with Details of the Component Prior to the Changes

select * from full_tableName tbl
 where tbl.effectiveTime > '20190131' and tbl.effectiveTime <= '20190731'
union
select * from full_tableName tbl
 where tbl.effectiveTime = (select max(sub.effectiveTime) from full_tableName
sub
 where sub.id = tbl.id
and sub.effectiveTime<='20190131')
 and tbl.id IN (select id from full_tableName
 where effectiveTime > '20190131' and
 effectiveTime <= '20190731')
order by id;

1 For more details about potential snapshot view query errors see C.3. Common Mistakes with Snapshot
Generation.

2 This interpretation of "the most recent delta" depends on the practice of periodic releases with all rows added
since the last release assigned the effectiveTime of the release. However, in cases where frequent interim
releases are made, it may be more accurate to consider the "the most recent delta" to consist of all rows with an
effectiveTime greater than the previous release date and less than or equal to the current release date. In this
case, all delta view queries would to follow the form of the Specified Date Range Delta View Query with a start and
end date.

4.6.2. Versioned Database Table Views
The previous section described queries that can be applied to database tables to access snapshot and delta views
of individual database tables. However, meaningful access to SNOMED CT requires querying of interrelated data in
multiple database tables including concepts, descriptions, relationships and reference sets. In most cases, the data
from each of those tables needs to be from a snapshot view for the same date. This implies these composite need to
derive information from snapshot queries applied to the table rather than directly accessing the table.
Consequently, what should be relatively simple queries rapidly become complex, making them hard to understand
and prone to errors.

Fortunately, relational databases provide solutions that reduce this complexity by allowing a query to be used to
define a database view. These defined views can then be queried in exactly the same way as a database table. The
result of this is that if all the required snapshot and delta views are defined for every table in a SNOMED CT
database, it is possible to write relatively simple queries that return useful combinations of data from snapshot
views of different tables.

Representing Snapshots as Database Views
The examples below two snapshot database views of a full release table. The first is current snapshot view and the
second a is snapshot for 2019-01-31.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 24

Creating a Current Snapshot View from the Full Concept Table

CREATE VIEW snap_concept as (select * from full_concept tbl
 where tbl.effectiveTime = (select max(sub.effectiveTime) from full_concept
sub
 where sub.id =
tbl.id));

Creating a Retrospective Snapshot View for 2019-01-31 from the Full Concept Table

CREATE VIEW snap20190131_concept as (select * from full_concept tbl
 where tbl.effectiveTime = (select max(sub.effectiveTime) from full_concept
sub
 where sub.id = tbl.id
and sub.effectiveTime<='20190131');

Having created those two views it is then possible to write queries like the examples below to display data from
these snapshot views.

Creating a Current Snapshot View from the Full Concept Table

select * from snap_concept where id in (3859001,3704008);

Creating a Retrospective Snapshot View for 2019-01-31 from the Full Concept Table

select * from snap20190131_concept where id in (3859001,3704008);

Comparing the results of these two queries shows that in January 2019 both concepts changed in the 2019-07-31
release. The concept with id 3859001 was made inactive and the definitionStatusId of concept with id 3704008 was
changed from 900000000000074008 (primitive) to 900000000000073002 (defined).

Creating Configurable Snapshot Views
It is possible to create snapshot views of every release file for every SNOMED CT release of SNOMED CT. However,
this would result in over 600 distinct snapshot table views, most of which would rarely be used. A more practical
solution is to create views for the current snapshot and two or three retrospective views with a configurable
snapshot date. The SNOMED CT example database includes two retrospective snapshot views with a snapshotTime
value in an identified row in a configuration table specifying the snapshot date.

The definition of one of these views is shown here. The other view (snap2_concept) has the same definition except
that it specifies `cfg`.`id` = 2 rather than `cfg`.`id` = 1 so it refers to a different row in the configuration table.
Having two independently configurable snapshots, allows queries to be written than compare different snapshots.
Because the same configurable views are provided for all full release tables, changes to the snapshotTime for a view
apply simultaneously to all those components and reference set members.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 25

Example of Configurable Retrospective View Definition

CREATE VIEW `snap1_concept` AS select `tbl`.`id` AS `id`,`tbl`.`effectiveTime` AS
 `effectiveTime`,`tbl`.`active` AS `active`,`tbl`.`moduleId` AS
 `moduleId`,`tbl`.`definitionStatusId` AS `definitionStatusId` from `full_concept`
`tbl` where (`tbl`.`effectiveTime` = (select max(`sub`.`effectiveTime`) from
 (`full_concept` `sub` join `config_settings` `cfg`) where ((`sub`.`id` = `tbl`.`id`)
and (`cfg`.`id` = 1) and (`sub`.`effectiveTime` <= `cfg`.`snapshotTime`))));

Creating Configurable Delta Views
The SNOMED CT example database also includes two configurable delta views. These are created and configured in
the same way as the configurable snapshot views. However in this case, deltaStartTime and deltaEndTime values in
the identified configuration table row specify the delta period.

Example of Configurable Retrospective View Definition

CREATE VIEW `delta1_concept` AS select `tbl`.`id` AS `id`,`tbl`.`effectiveTime` AS
 `effectiveTime`,`tbl`.`active` AS `active`,`tbl`.`moduleId` AS
 `moduleId`,`tbl`.`definitionStatusId` AS `definitionStatusId` from (`full_concept`
`tbl` join `config_settings` `cfg`) where ((`cfg`.`id` = 1) and
 (`tbl`.`effectiveTime` <= `cfg`.`deltaEndTime`) and (`tbl`.`effectiveTime` >
`cfg`.`deltaStartTime`));

4.6.3. Optimizing Versioned Table Views

Using Separate Snapshot Tables
One of the points identified in the previous section is that snapshot queries and database views are less likely to
perform as well as direct access to database tables. As shown in Table 4.6.3-1 on the SNOMED CT example database
confirm that there is a substantial performance difference between these two approaches.

Table 4.6.3-1: Testing Performance of Queries on Snapshot Tables and Snapshot Views

Snapshot Table
seconds

Snapshot Views
1

seconds

Performance Ratio

Read 1 million rows from relationship snapshot 1.52 11.06 15%

Read 1 million rows from description snapshot 3.57 12.73 28%

Read all rows from concept snapshot 0.66 2.45 26%

Total time for all operations above 5.75 25.74 22%

Advanced test reading 10,000 relationships and with joins to
descriptions and language reference set for the fully specified names
of source, type and target concept

2.34 4.70 50%

Based on these findings the most effective way to optimize access to a snapshot view, is to replace the use of
database views with snapshot tables. Representing the a snapshot with tables, rather than using a database view,
adds roughly 2.6 Gb to the storage requirements for the example database.

The current snapshot view is essential and is used for most interactions with the database. Therefore, the
performance enhancements justify use of the additional disk space required to store the current snapshot in
separate tables. If there are specific reasons for extensive access to one or two retrospective snapshots, it might

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 26

1.
2.

3.

4.

also be worthwhile representing those snapshots in separate tables. However, it would not be worthwhile to apply
the same approach to the full range of less frequently used retrospective snapshots. Therefore, if the snapshot
views defined in 4.6.2 do not perform sufficiently well, it is worth considering ways to optimize snapshot access.

Unlike the views described earlier, the optimization methods described below require additional columns to be
added to each of the full release tables. After importing release files, the tables are processed to generate values for
the additional columns and this data is used to simplify the snapshot view queries by avoiding the need for nested
queries.

Snapshot Flags Optimization Method

Overview
A column is added to each full release table. This column is used to represent flags that indicate which snapshot
view each row is included in.

Practical Example
A single 64-bit integer column called flag is added to all full release tables with a default value of 0 (zero).
A distinct number which is a power of 2 between 20 and 263 is assigned to each required retrospective
snapshot time.
The flag column in each row is set to the sum of the values of all the snapshots in which that row appears.

To be precise this means that a specific bit in the flag value is set if the row is part of a particular
snapshot and is not set if it is not part of that snapshot.

Once this process is complete, it is possible to select the rows of a retrospective snapshot with a simple
query that tests the relevant bit in the flag column value.

This avoids the need for the nested query required to identify rows that are part of a snapshot.

The example SQL below illustrates the process of flag setting. In practice, while this query works it is not very
efficient for several reasons. A more efficient approach would be to use a stored procedure that computes the full
set of flags applicable to each row. This approach would allow the flag column in each row to be updated once
rather than requiring a separate update for each snapshot view.

A configurable snapshot view can then be created tests the appropriate bit rather than requiring a nested query.

Illustrative Example of a Flag Setting Query

SET SQL_SAFE_UPDATES=0;
update full_tableName tbl
 set flag=flag | 1
 where tbl.effectiveTime=(select max(sub.effectiveTime) from copy_full_tableName sub
where sub.id=tbl.id and sub.effectiveTime<='20190731');
update full_tableName tbl
 set flag=flag | 2
 where tbl.effectiveTime=(select max(sub.effectiveTime) from copy_full_tableName sub
where sub.id=tbl.id and sub.effectiveTime<='20190131');
update full_tableName tbl
 set flag=flag | 4
 where tbl.effectiveTime=(select max(sub.effectiveTime) from copy_full_tableName sub
where sub.id=tbl.id and sub.effectiveTime<='20180731');
update full_tableName tbl
 set flag=flag | 8
 where tbl.effectiveTime=(select max(sub.effectiveTime) from copy_full_tableName sub
where sub.id=tbl.id and sub.effectiveTime<='20180131');
SET SQL_SAFE_UPDATES=1;

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 27

•

•

•

•

•
•
•

1.

2.

Once the flags are set, a query such as the one below can be used to return component versions that are part of a
particular snapshot view. The example query returns row in which the flag the second bit (value 2) is set. Based
on the settings in the query above this means it would include rows that are part of the 2019-01-31 snapshot view of
this table

Example of a Snapshot Query Using the Flag Method

select * from full_tableName where flag & 2;

Performance
Limited testing of this optimization approach indicates that it is between 2 and 3 times faster than the unoptimized
snapshot views. Direct access to a snapshot table is still twice as fast as this optimized approach.

Storage Requirements
The full release files in the 2019-07-31 release contain a total of approximately 16 million rows. If flags are added
each of these rows will require a further 8 bytes of storage. No additional indexes are required to support this
optimization. As a result the overall increase in storage requirements to support this optimization is less than 150
Mb.

As described here the approach is limited to 64 snapshot times. This is probably more than sufficient for most
practical requirements. However, it and could be extended by adding an another flag column or by changing the
data type of the flag column to binary.

Disadvantages
The process of setting the flags required for this approach adds significantly to the time taken to build the
database.
Adding an additional column to every table means that queries using "SELECT * FROM ... " will return a flag

column that is not part of the original SNOMED CT data.
The flag values are technically essential to the process but this may not be apparent to anyone exploring the
database.
Significantly slower than direct access to snapshot tables. Optimum current snapshot performance still
requires the snapshot table.

Advantages
A significant improvement in retrospective snapshot performance compared with unoptimized tables.
Minimal impact on disk capacity (adds less that 5% to the size of the full release tables).
Provides a fallback option for the current snapshot view if storage capacity is limited.

Superseded Time Optimization Method

Overview
An additional datetime column is added to each row. This column is used to represent the time at when a row was
replaced by the next version of that component or reference set member.

Practical Example
A single datetime column called supersededTime is added to all full release tables with a default value of a
long distant future date (e.g. 9999-12-31).
Each full table is queried to establish the sequence of versions of each component or reference set member
in effectiveTime order.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 28

3.

4.

The supersededTime of a component that have been updated is set to the effectiveTime of the immediately
following version of that component
Once this process is complete each component is part of all snapshot views with a snapshot time greater
than or equal to its effectiveTime and less than its supersededTime.

This can be tested without the need for a nested query.

The example SQL below illustrates the process of flag setting. In practice, while this query works it is not very
efficient for several reasons. A more efficient approach would be to use a stored procedure that computes the full
set of flags applicable to each row. This approach would allow the flag column in each row to be updated once
rather than requiring a separate update for each snapshot view.

Illustrative Example of Queries Setting the supersededTime Value

-- Create temporary table for the supersededTime values
CREATE TEMPORARY TABLE tmp (id CHAR(36) NOT NULL,effectiveTime
DATETIME,supersededTime DATETIME, PRIMARY KEY (id,effectiveTime));

-- Compute the supersededTime values for each combination of id+effectiveTime and add
these to the temporary file
INSERT INTO tmp SELECT tbl.id, tbl.effectiveTime, (SELECT IFNULL(MIN(sub.effectiveTim
e),DATE "99991231") FROM full_tableName sub
 WHERE tbl.id=sub.id AND tbl.effectiveTime<sub.effectiveTime) supersededTime FROM
 full_tableName tbl;

-- Apply the appropriate supersededTime values to each row in the full table
UPDATE full_tableName tbl
 JOIN tmp
 SET tbl.supersededTime=tmp.supersededTime
 WHERE tmp.id=tbl.id AND tmp.effectiveTime=tbl.effectiveTime;

Once the superseded time values are set, a query such as the one below can be used to return component versions
that are part of a particular snapshot view. The example query returns row in which the flag the second bit (value 2)
is set. Based on the settings in the query above this means it would include rows that are part of the 2019-01-31
snapshot view of this table

Example of a Current Snapshot Query Using the supersededTime Method

-- This query assumes the default supersededTime is 9999-12-31
SELECT *
 FROM full_tableName
 WHERE supersededTime = DATE '99991231';

Example of a Retrospective Snapshot Query Using the supersededTime Method

-- This query assumes that [snapshotTime] is replaced by the required snapshotTime
SELECT *
 FROM full_tableName
 WHERE [snapshotTime] >= effectiveTime AND [snapshotTime] < supersededTime;

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 29

•

•

•

•

•

•

•

•

Performance

Past experience indicates that this approach is 2 times faster than the unoptimized snapshot views 2 . However, this
figure varies depending on the complexity of the queries it is used in. Direct access to a snapshot table is between 2
and 3 times as fast as this optimized approach.

Storage Requirements
The full release files in the 2019-07-31 release contain a total of approximately 16 million rows. If a datetime column
is added, each of these rows will require a further 5 bytes of storage. Database designs using this additional column
also included additional indexes including supersededTime 3 . As a result, the storage to fully support this approach
required an additional 750 Mb.

Disadvantages
The process of setting the supersededTime required for this approach adds significantly to the time taken to
build the database.
Adding an additional column to every table means that queries using "SELECT * FROM ... " will return the
supersededTime column that is not part of the original SNOMED CT data.
The supersededTime values are technically essential to the process but this may not be apparent to anyone
exploring the database.
The use of supersededTime together with associated indexes increases the storage capacity required for the
full release tables by approximately 20%.
Significantly slower than direct access to snapshot tables and since the introduction of MySQL 8.0 are also
slower than the snapshot flagging method.

Advantages
An improvement in retrospective snapshot performance compared with unoptimized tables but is out-
performed by the snapshot flagging method.
A fallback option for the current snapshot view if storage capacity is limited but requires more storage than
the snapshot flagging method.
Supports an unlimited number of snapshot times.

1 These views are defined using the general form described in 4.6.2.

2 Previous tests in MySQL 5.7 were 3 times faster than unoptimized snapshot views. However, MySQL 8.0 seems to
have enhanced the performance of the unoptimized queries without significantly improving the results of this
approach to optimization.

3 The performance impact of removing some of these indexes was not tested, so it is unclear if benefits could still
be delivered by this approach without these indexes.

4.7. Enabling Subtype Testing

Requirement
The SNOMED CT subtype polyhierarchy is an important resource which allows retrieval of all the concepts that are
subtypes of a specified concept. The full hierarchy is represented by subtype (is a) relationships between each
concept and its proximal supertypes. Therefore, to determine is whether a concept is a subtype of another concept
a chain of these subtypes must be followed. It is possible to follow these chain in a relational database
environment but the queries to achieve this are complex and often perform poorly.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 30

•
•
•

1.

2.

3.

Solution
Fortunately, there is a well-understood way to simplify and speed up the testing process. This requires the creation
of a resource known as a transitive closure table. A transitive closure table includes direct relationships between
every concept and all of it subtypes and supertypes. This makes it possible to test whether a concept is a subtype of
another concept looking for a single row in that table. Similarly it makes it easy to access all the subtypes (or
supertypes) of concept with a query on a single table.

Creating a Transitive Closure File
SNOMED International provides a Perl script that reads the snapshot relationships file. By processing this file, it
rapidly generates the transitive closure of all the subtype relationships and then saves this as a file. The result a two
column file (subtypeId and supertypeId) containing more than 6.5 million rows. This transitive closure file can then
be read into a database table in the same way as the release files.

Using a Transitive Closure File
By using the transitive closure table very simple queries can:

Test is concept A is a subtype of concept B
List all supertypes of concept A
List all subtypes of concept A

Computing Proximal Primitive Supertypes
The transitive closure can also be used to determine which supertype concept or concepts are essential to the
definition of a concept. These concepts are known as the proximal primitive supertypes of a concept. Proximal

primitive supertypes can be computed as follows.

Use the transitive closure table to get the set of all concepts that are supertypes of concept A
Call this set: Set-B

Create a subset of Set-B containing only those concepts with definitionStatusId= 900000000000074008 |
Primitive|

Call this set: Set-C
Create a subset of Set-C containing only those concepts that have no subtypes that are also in Set-C 1

The resulting set represents the primitive supertypes of concept A.

1 Concepts in Set-C that also have subtypes in Set-C are primitive supertypes of concept A but they are not
proximal primitive supertypes because these subtype(s) are more specific concepts that are also primitive
supertypes of concept A.

4.8. Composite Views
Section 4.6. Enabling Versioned Views considered the value of views of individual database tables. The objective of
these views was to facilitate access to a range of useful snapshot and delta views. This section introduces the idea
of defining composite views that access interrelated sets of data from different release files. The objective of
composite views is to make it easier to access appropriate sets of data.

https://confluence.ihtsdotools.org/display/DOCGLOSS/proximal+primitive+supertype
http://snomed.info/id/900000000000074008
http://snomed.info/id/900000000000074008
http://snomed.info/id/900000000000074008
http://snomed.info/id/900000000000074008
http://snomed.info/id/900000000000074008
http://snomed.info/id/900000000000074008

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 31

The following subsections describe some general characteristics of composite views and introduce some of the
composite views included in the SNOMED CT example database.

4.8.1. General Characteristics of Composite Views

Data Sources for Composite Views
Composite views need to get data from snapshot views. In most cases the requirements will be met by use of the
current snapshot view 1 of each of the relevant tables. However, when reviewing past data the relevant
retrospective views will need to be accessed. For this reason, consideration should be given to creating similar
composite views for each supported snapshot view 2 .

Most composite views should to gather all the required data from the table views for the same snapshot as
illustrated in Table 4.8.1-1.

Table 4.8.1-1: Source Views for Data in Composite Views of Different Snapshots

Composite View snap_pref snap1_pref snap2_pref

Description View snap_description snap1_description snap2_description

Language Refset View snap_refset_language snap1_refset_language snap2_refset_language

Composite views may themselves gather data from other composite views. For example as shown in Table
4.8.1-2 gets preferred term data from the preferred term composite views shown above.

Table 4.8.1-2: Composite View Including Data from Another Composite View

Composite View snap_rel_pref snap1_rel_pref snap2_rel_pref

Concept View snap_concept snap1_concept snap2_concept

Relationship View snap_relationship snap1_relationship snap2_relationship

Preferred Term View snap_pref snap1_pref snap2_pref

Composite views designed to support review of changes may gather data from different views as illustrated in Table
4.8.1-3.

Table 4.8.1-1: Source Views for Data in Historical Composite Views of Different Delta Views

Composite View delta_inactive_concepts delta1_inactive_concepts delta2_inactive_concepts

Concept View delta_concept delta1_concept delta2_concept

•

•

•
•

•

Example

Apart from the concept identifier, the concept table contains no useful human-readable data about a
concept. Therefore, simply selecting data from a snapshot view of the concept table is unlikely to be
useful.
To display appropriate human-readable information about a concept information is required from two
other tables:

The human-readable information about a concept is in the description table or view (e.g.
snap_description)
Information about which descriptions are preferred or acceptable in given language data is in a
language refset table or view (e.g. snap_refset_language).

To display human-readable information about the way a concept is defined data is required from three
other tables:

The defining relationships are in the relationships table or view (e.g. snap_relationship)
Human-readable display of the type and value specified in the relationship requires data from the
description table or view (e.g. snap_description)
Information about which descriptions are preferred or acceptable in given language data is in a
language refset table or view (e.g. snap_refset_language).

|

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 32

Association Refset View snap_refset_association snap_refset_association snap_refset_association

Attribute Value Refset View snap_refset_attributevalue snap_refset_attributevalue snap_refset_attributevalue

Preferred Term View snap_pref snap_pref snap_pref

Fully Specified Name View
3 snap_fsn snap_fsn snap_fsn

Representation of Composite Views
Composite views should be represented as database views rather than a physical database tables. Composite views
denormalize data by combining the same data in different views therefore attempts to represent composite views
as database tables is likely to rapidly multiply the size of the database. The example below is just one of many cases
where creating concrete database tables to accommodate composite views might seem an attractive idea.
However, pursuing this would create redundant data with few benefits, a major impact on storage requirements
and a significantly more complex maintenance process when reviewing and installing future release packages. In
contrast, representing composite views as database views, ensures the data is derived in real-time from tables
representing the authoritative content of the full and/or snapshot release files.

1 As noted in 4.6.3. Optimizing Versioned Table Views the current snapshot may be represented as tables or
database views. While this may make a difference to performance it does not make any difference to the design
of composite views.

2 In the SNOMED CT example database, most composite views have been created for the current snapshot (snap)
and for both of the configurable retrospective snapshot views (snap1 and snap2). However, composite views
that access either the transitive closure (snap_transclose) or proximal primitives (snap_proxprim) are not
supported for the retrospective snapshots. This is because those tables are at present on available for the
current snapshot view.

3 The views snap_fsn, snap1_fsn and snap2_fsn are composite views similar to snap_pref but return the fully
specified name rather than the preferred term.

4.8.2. Composite Description Views

Composite description views enable access to appropriate individual descriptions or sets of descriptions in a
specific language or dialect. There are two sets of composite description views. Views in the first of these sets are
designed to facilitate selecting descriptions associated with one or more identified concepts. Views in the other set
are designed to enable searching descriptions to find concepts.

Views that Facilitate Selecting Concept Descriptions
For each snapshot view the SNOMED CT example database includes four views designed for selecting specific sets
of descriptions for one or more specified concepts. The characteristics of each of these views are shown in Table
4.8.2-1 and a general template for the SQL definitions of these views is shown in Template 4.8.2-1. To create each of
the views named in the table, the placeholders for {typeId} and {acceptabilityId} need to be replaced with values in
the Specific Settings column of the table.

Example 4.8.2-1 demonstrates the use of these views to show all the active descriptions of a specified concept that
are acceptable or preferred according to the language reference set referenced by the configuration file.

Example

Most English language descriptions are either preferred or acceptable in both US and GB english.
Therefore instantiating tables that represent the sets of preferred and acceptable terms in either or both
dialects would not only duplicate much of the data in that table but would require even more space to
duplicate the relevant indexes. In addition to the impact of disk space, data duplicated in these composite
tables would need updating to take account of new releases.

|

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 33

Table 4.8.2-1: Composite Description Views for Selecting Concept Descriptions

Name
1 Description Specific Settings

{typeId} {acceptabilityId}

snap_fsn This view selects the fully specified name of a concept (identified by
conceptId)

=
90000000000
0003001

= 900000000000548007

snap_pref This view selects the preferred synonym of a concept (identified by
conceptId)

=
90000000000
0013009

= 900000000000548007

snap_syn This view selects other acceptable synonyms of a concept (identified by
conceptId)

=
90000000000
0013009

= 900000000000549004

snap_synall This view selects all synonyms of a concept (identified by conceptId) =
90000000000
0013009

IN (900000000000548007,
900000000000549004) 2

Template 4.8.2-1: Description Selection Composite View Template

CREATE VIEW `snap_{name}` AS
(SELECT `d`.* FROM `snap_description` `d`
 JOIN `snap_refset_Language` `rs` ON `d`.`id` = `rs`.`referencedComponentId`
 JOIN `config_settings` `cfg` ON `rs`.`refSetId` = `cfg`.`languageId`
 WHERE `d`.`active` = 1 AND `d`.`typeId` {typeId}
 AND `rs`.`active` = 1 AND `rs`.`acceptabilityId` {acceptabilityId}
 AND `cfg`.`id`=0);

Example 4.8.2-1: Selecting Description Data for a Concept

SQL Query

Select conceptId,'FSN',id,term from snap_fsn where conceptId=95570007
UNION
Select conceptId,'Pref',id,term from snap_pref where conceptId=95570007
UNION
Select conceptId,'Syn',id,term from snap_syn where conceptId=95570007;

Result

conceptId FSN id term

95570007 FSN 839752010 Kidney stone (disorder)

95570007 Pref 158296018 Kidney stone

95570007 Syn 158297010 Renal stone

95570007 Syn 158298017 Nephrolith

95570007 Syn 158299013 Renal calculus

95570007 Syn 512193015 Calculus of kidney

95570007 Syn 512194014 Nephrolithiasis

95570007 Syn 512195010 Kidney calculus

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 34

Views that Facilitate Searching for Concepts
For each snapshot view the SNOMED CT example database includes two views that are designed to facilitate
searches for concepts associated with terms that match specified criteria. These views require both the description
and the associated concept to be active in the chosen snapshot. This avoids the need to filter out inactive concepts
from the search results 3 . The specific characteristics of these views is shown in Table 4.8.2-2 and a general
template for the SQL definitions of these views is shown in Template 2. To create the each of the views named in the
table, the placeholder for {typeId} needs to be replaced with values in the Specific Settings column of the table.

Example 2 show a query that searches the snap_syn_search_active view using MySQL's boolean full text search.
This search method requires all the words preceded by + (plus) to be included and excludes all words preceded by -
(minus). The results are shown together with the fully specified name of the concept (looked up using the snap_fsn
view). Although this is not a user-friendly way to specify a searches, the example SQL code illustrates the technical
power of this search technique. Other search techniques can also be applied to the search views and additional
options for enhancing searches are discussed in 4.9.4. Search Procedures.

Table 4.8.2-2: Composite Description Views that Facilitate Searching for Concepts

Name
1 Description Specific Settings

{typeId}

snap_
syn_search_active

This view includes active preferred and acceptable synonyms of active concepts. It excludes
fully specified names and also excludes all descriptions associated with concepts that are
inactive in the specified snapshot.

=
900000000000013009

snap_
term_search_active

This view includes active preferred and acceptable synonyms of active concepts. IN
(900000000000003001
,
900000000000013009)
4

Template 4.8.2-2: Description Search Composite View Template

CREATE VIEW `snap_syn_search_active` AS
(SELECT `d`.*,`rs`.`acceptabilityId` FROM `snap_description` `d`
 JOIN `snap_refset_Language` `rs` ON `d`.`id` = `rs`.`referencedComponentId`
 JOIN `snap_concept` `c` ON `c`.`id` = `d`.`conceptId`
 JOIN `config_settings` `cfg` ON `rs`.`refSetId` = `cfg`.`languageId`
 WHERE `d`.`active` = 1 AND `d`.`typeId` {typeId}
 AND `rs`.`active` = 1
 AND `c`.`active` = 1
 AND `cfg`.`id`=0);

Usage Example

Example 4.8.2-2: Searching Terms to Find Concepts

SQL Query

SELECT `s`.`conceptId`,`s`.`term` 'matching term',`f`.`term` `FSN` FROM
 `snap_syn_search_active` `s`
 JOIN `snap_fsn` `f` ON `f`.`conceptId`=`s`.`conceptId`
 WHERE MATCH (`s`.`term`)
 AGAINST ('+acute +anterior +myocardial +infarction -ecg
-old -ekg' IN BOOLEAN MODE) ORDER BY length(`f`.`term`),length(`s`.`term`);

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 35

Result

conceptId matching term FSN

54329005 Acute anterior myocardial infarction Acute myocardial infarction of anterior wall (disorder)

54329005 Acute myocardial infarction of anterior wall Acute myocardial infarction of anterior wall (disorder)

703164000 Acute anterior ST segment elevation myocardial
infarction

Acute ST segment elevation myocardial infarction of
anterior wall (disorder)

703164000 Acute STEMI (ST elevation myocardial infarction) of
anterior wall

Acute ST segment elevation myocardial infarction of
anterior wall (disorder)

703164000 Acute ST segment elevation myocardial infarction of
anterior wall

Acute ST segment elevation myocardial infarction of
anterior wall (disorder)

703252002 Acute myocardial infarction of anterior wall involving
right ventricle

Acute myocardial infarction of anterior wall involving
right ventricle (disorder)

703252002 Acute myocardial infarction of anterior wall with
right ventricular involvement

Acute myocardial infarction of anterior wall involving
right ventricle (disorder)

703165004 Acute ST segment elevation myocardial infarction of
anterior wall involving right ventricle

Acute ST segment elevation myocardial infarction of
anterior wall involving right ventricle (disorder)

703165004 Acute anterior ST segment elevation myocardial
infarction with right ventricular involvement

Acute ST segment elevation myocardial infarction of
anterior wall involving right ventricle (disorder)

703165004 Acute STEMI (ST elevation myocardial infarction) of
anterior wall with right ventricular involvement

Acute ST segment elevation myocardial infarction of
anterior wall involving right ventricle (disorder)

285981000119103 Acute ST segment elevation myocardial infarction
involving left anterior descending coronary artery

Acute ST segment elevation myocardial infarction
involving left anterior descending coronary artery
(disorder)

1 The prefix snap is replaced by snap1 or snap2 for retrospective views. [a b]
2 An alternative way to represent snap_synall is to remove the acceptability condition. The link to the language

refset and the test for the `rs`.`active` condition must retained to ensure only descriptions in the relevant
language refset are returned.

3 Requirements for searches that need to include inactive concepts can be run against the concept description
selection views.

4 Alternatively remove the typeId condition to permit all types to be searched.

4.8.3. Composite Subtype Hierarchy Views

Composite subtype hierarchy views enable selection of supertypes and subtypes of specified
concepts accompanied by human-readable terms for each the selected concepts. The hierarchy views include super
type parents, subtype children, supertype ancestors and subtype descendants of specified concepts. More
specialized views are also included to list the proximal primitive parents of a specified concepts and to list concepts

that share a specified proximal primitive parent. All these views use include a human-readable term (either the fully
specified name or the preferred synonym) for each concept listed in the output 1 .

Supertype Parent and Subtype Child Views
For each snapshot view the SNOMED CT example database includes two views that select the supertype parents of
a specified concept and two views that select the subtype children of a specified concept. These views select the id
and either the fully specified name or preferred synonym each parent or child concept. The characteristics of each
of these views are shown in Table 4.8.3-1 and a general template for the SQL definitions of these views is shown

https://confluence.ihtsdotools.org/display/DOCGLOSS/supertype+parent
https://confluence.ihtsdotools.org/display/DOCGLOSS/supertype+parent
https://confluence.ihtsdotools.org/display/DOCGLOSS/subtype+children
https://confluence.ihtsdotools.org/display/DOCGLOSS/supertype+ancestor
https://confluence.ihtsdotools.org/display/DOCGLOSS/subtype+descendant
https://confluence.ihtsdotools.org/display/DOCGLOSS/proximal+primitive+parent
https://confluence.ihtsdotools.org/display/DOCGLOSS/supertype+parent
https://confluence.ihtsdotools.org/display/DOCGLOSS/subtype+children

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 36

in Template 4.8.3-1. To create each of the views named in the table, the placeholders for {termtype} need to be
replaced with values in the Specific Settings column of the table.

Example 4.8.3-1 demonstrates the use of these views to select the id and preferred term for a specified concept and
all of its supertype parents and subtype children.

Table 4.8.3-1: Composite Views of Supertype Parents and Subtype Children

Name
2 Description Specific

Settings

{termtype}

snap_rel_parent_fsn Selects the id and fully specified name of each supertype parent of a concept specified by conceptId. fsn

snap_rel_parent_pref Selects the id and preferred synonym of each supertype parent of a concept specified by conceptId. pref

snap_rel_child_fsn Selects the id and fully specified name of each subtype child of a concept specified by conceptId. fsn

snap_rel_child_pref Selects the id and preferred synonym of each subtype child of a concept specified by conceptId. pref

Template 4.8.3-1: SQL Templates for Composite Views of Supertype Parents and Subtype
Children

-- Supertype Parent View
CREATE VIEW `snap_rel_parent_{termtype}` AS
 SELECT `r`.`targetId` AS `id`, `d`.`term` AS `term`, `r`.`sourceId` AS
 `conceptId`
 FROM `snap_relationship` `r` JOIN `snap_{termtype}` `d` ON `r`.`targetId` =
`d`.`conceptId`
 WHERE `r`.`active` = 1 AND `r`.`typeId` = 116680003;
-- Subtype Child View: Differences are `sourceId` changed to `targetId` and
`targetId` changed to `sourceId` as shown below
CREATE VIEW `snap_rel_child_{termtype}` AS
 SELECT `r`.`sourceId` AS `id`, `d`.`term` AS `term`, `r`.`destinationId` AS
 `conceptId`
 FROM `snap_relationship` `r` JOIN `snap_{termtype}` `d` ON `r`.`sourceId` =
`d`.`conceptId`
 WHERE `r`.`active` = 1 AND `r`.`typeId` = 116680003;

Example 4.8.3-1: Selecting Supertype Parents and Subtype Children

SQL Query

Select "Concept", conceptid, term from snap_pref where conceptId=6025007
UNION
Select "Supertype Parent", id, term from snap_rel_parent_pref where
 conceptId=6025007
UNION
Select "Subtype Child", id, term from snap_rel_child_pref where conceptId=6025007;

Result

Concept id term

Concept 602500

7

Laparoscopic appendectomy

Supertype Parent 51316
009

Laparoscopic procedure

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 37

Supertype Parent 80146
002

Appendectomy

Supertype Parent 26427
4002

Endoscopic operation

Supertype Parent 44058
8003

Endoscopic procedure on appendix

Subtype Child 17404
1007

Laparoscopic emergency appendectomy

Subtype Child 30758
1005

Laparoscopic interval appendectomy

Subtype Child 70887
6004

Robot assisted laparoscopic appendectomy

Transitive Closure Views of Supertype Ancestors and Subtype Descendants
For each snapshot view the SNOMED CT example database includes two views that select the supertype
ancestors of a specified concept and two views that select the subtype descendants of a specified concept. These
views select the id and either the fully specified name or preferred synonym each ancestor or descendant
concept. The characteristics of each of these views are shown in Table 4.8.3-2 and a general template for the SQL
definitions of these views is shown in Template 4.8.3-2. To create each of the views named in the table, the
placeholders for {termtype} need to be replaced with values in the Specific Settings column of the table.

Example 4.8.3-2 demonstrates the use of these views to select the id and preferred term for a specified concept and
all of its supertype ancestors and subtype descendants.

Table 4.8.3-2: Transitive Closure Views of Supertype Ancestors and Subtype Descendants

Name
3

.

Description Specific Settings

{myph}

snap_
tc_an
cesto
r_fsn

Selects the id and fully specified name of each supertype ancestor of a concept specified by conceptId. fsn

snap_
tc_an
cesto
r_pre
f

Selects the id and preferred synonym of each supertype ancestor of a concept specified by conceptId. pref

snap_
tc_de
scend
ant_f
sn

Selects the id and fully specified name of each subtype descendant of a concept specified by conceptId. fsn

snap_
tc_de
scend
ant_p
ref

Selects the id and preferred synonym of each subtype descendant of a concept specified by conceptId. pref

Template 4.8.3-2: SQL Templates for Composite Views of Supertype Ancestors and Subtype
Descendants

https://confluence.ihtsdotools.org/display/DOCGLOSS/supertype+ancestor
https://confluence.ihtsdotools.org/display/DOCGLOSS/supertype+ancestor
https://confluence.ihtsdotools.org/display/DOCGLOSS/subtype+descendant

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 38

-- Supertype Ancestor View: Differences are `sourceId` changed to `targetId` and
`targetId` changed to `sourceId` as shown below
CREATE VIEW `snap_tc_ancestor_{termtype}` AS
(SELECT `r`.`supertypeId` `id`,`d`.`term` `term`,`r`.`subtypeId` `conceptId`
 FROM `snap_transclose` `r`
 JOIN `snap_{termtype}` `d` ON (`r`.`supertypeId` = `d`.`conceptId`));

--- Subtype Descendant View
CREATE VIEW `snap_tc_descendant_{termtype}` AS
(SELECT `r`.`subtypeId` `id`,`d`.`term` `term`,`r`.`supertypeId` `conceptId`
 FROM `snap_transclose` `r`
 JOIN `snap_{termtype}` `d` ON (`r`.`subtypeId` = `d`.`conceptId`));

Example 4.8.3-2: Selecting Supertype Ancestors and Subtype Descendants

SQL Query

Select "Concept", conceptid, term from snap_pref where conceptId=6025007
UNION
Select "Ancestor", id, term from snap_tc_ancestor_pref where conceptId=6025007
UNION
Select "Descendant", id, term from snap_tc_descendant_pref where conceptId=6025007;

Result

Concept conceptId term

Concept 16001004 Otalgia

Ancestor 22253000 Pain

Ancestor 102957003 Neurological finding

Ancestor 106147001 Sensory nervous system finding

Ancestor 118234003 Finding by site

Ancestor 118236001 Ear and auditory finding

Ancestor 118254002 Finding of head and neck region

Ancestor 138875005 SNOMED CT Concept

Ancestor 247234006 Ear finding

Ancestor 276435006 Pain / sensation finding

Ancestor 279001004 Pain finding at anatomical site

Ancestor 297268004 Ear, nose and throat finding

Ancestor 301354004 Pain of ear structure

Ancestor 301857004 Finding of body region

Ancestor 404684003 Clinical finding

Ancestor 406122000 Head finding

Ancestor 699697007 Finding of sensation by site

Descendant 12336008 Referred otalgia

Descendant 74123003 Otogenic otalgia

Descendant 162356005 Earache symptoms

Descendant 162359003 Bilateral earache

Descendant 430879002 Posterior auricular pain

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 39

Descendant 1084561000119106 Bilateral referred otalgia of ears

Descendant 1089561000119107 Referred otalgia of left ear

Descendant 1092171000119100 Referred otalgia of right ear

Proximal Primitive Parent Views
For each snapshot view the SNOMED CT example database includes two views that select the proximal primitive
parents of a specified concept and two views that select the subtype children of a specified concept. These views
select the id and either the fully specified name or preferred synonym each parent or child concept. The
characteristics of each of these views are shown in Table 4.8.3-1 and a general template for the SQL definitions of
these views is shown in Template 4.8.3-1. To create each of the views named in the table, the placeholders
for {termtype} need to be replaced with values in the Specific Settings column of the table.

Example 4.8.3-1 and Example 4.8.3-4 demonstrate the use of these views to select the id and preferred term for a
specified concept and all of its supertype parents and subtype children.

For each snapshot view the SNOMED CT example database includes The characteristics of each of these views
are shown in Table 4.8.3-3 and a general template for the SQL definitions of these views is shown in Template
4.8.3-3. To create each of the views named in the table, the placeholders for {myph} need to be replaced with values
in the Specific Settings column of the table.

Example 4.8.3-3 demonstrates the use of these views to select the id and preferred term for a specified concept and
its proximal primitive parents. Example 4.8.3-4 demonstrates the use of these views to select the id and preferred
term for a specified concept and all the concepts that have this concept as a proximal primitive parent.

Table 4.8.3-3: Views of Proximal Primitive Supertype Ancestors and Concepts with a Specific
Proximal Primitive Ancestor

Name
3 Description Specific Settings

{viewtype}

snap_pp_parent_fsn Selects the id and fully specified name of each proximal primitive parent of a concept specified
by conceptId.

fsn

snap_pp_parent_pref Selects the id and preferred synonym of each proximal primitive parent of a concept specified
by conceptId.

pref

snap_pp_child_fsn Selects the id and fully specified name of each concept with a proximal primitive parent

specified by conceptId.
fsn

snap_pp_child_pref Selects the id and preferred synonym of each concept with a proximal primitive parent

specified by conceptId.
pref

Template 4.8.3-3: SQL Templates for Proximal Primitive Supertype Views

-- Proximal primitive parents of a specified concept
CREATE VIEW `snap_pp_parent_{viewtype}` AS
(SELECT `r`.`supertypeId` `id`,`d`.`term` `term`,`r`.`subtypeId` `conceptId`
 FROM `snap_proximal_primitives` `r`
 JOIN `snap_{viewtype}` `d` ON (`r`.`supertypeId` = `d`.`conceptId`));

-- Concepts with a specified proximal primitive parent concept
CREATE VIEW `snap_pp_child_{viewtype}` AS
(SELECT `r`.`subtypeId` `id`,`d`.`term` `term`,`r`.`supertypeId` `conceptId`
 FROM `snap_proximal_primitives` `r`
 JOIN `snap_{viewtype}` `d` ON (`r`.`subtypeId` = `d`.`conceptId`));

Example 4.8.3-3: Selecting Proximal Primitive Parents of a Concept

SQL Query

https://confluence.ihtsdotools.org/display/DOCGLOSS/proximal+primitive+parent
https://confluence.ihtsdotools.org/display/DOCGLOSS/proximal+primitive+parent
https://confluence.ihtsdotools.org/display/DOCGLOSS/subtype+children

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 40

--
Select "Concept", conceptid, term from snap_pref where conceptId=21522001
UNION
Select "Proximal Primitive Parent", id, term from snap_pp_parent_pref where
 conceptId=21522001;

Result

Concept conceptI

d

term

Concept 21522001 Abdominal pain

Proximal Primitive
Parent

22253000 Pain

Example 4.8.3-4: Selecting Concepts with a Specified Proximal Primitive Parent

Select "Concept", conceptid, term from snap_pref where conceptId=22253000
UNION
Select "Concept with PP-Parent: 21522001|Pain|", id, term from snap_pp_child_pref
where conceptId=22253000;

Result

Concept conce

ptId

term

Concept 22253

000

Pain

Concept with PP-Parent: 21522001 |
Pain|

44480
06

Allergic headache

Concept with PP-Parent: 21522001 |
Pain|

45680
03

Retrosternal pain

Concept with PP-Parent: 21522001 |
Pain|

65610
07

Pain in urethra

Concept with PP-Parent: 21522001 |
Pain|

10601
006

Pain in lower limb

Concept with PP-Parent: 21522001 |
Pain|

12584
003

Bone pain

Concept with PP-Parent: 21522001 |
Pain|

15803
009

Bladder pain

Concept with PP-Parent: 21522001 |
Pain|

16513
000

Postcordotomy pain

Concept with PP-Parent: 21522001 |
Pain|

18876
004

Pain in finger

Concept with PP-Parent: 21522001 |
Pain|

20793
008

Scapulalgia

Concept with PP-Parent: 21522001 |
Pain|

21522
001

Abdominal pain

Concept with PP-Parent: 21522001 |
Pain|

21545
007

Tenalgia

Concept with PP-Parent: 21522001 |
Pain|

29857
009

Chest pain

Concept with PP-Parent: 21522001 |
Pain|

30473
006

Pain in pelvis

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 41

Concept with PP-Parent: 21522001 |
Pain|

30989
003

Knee pain

... total of 240 rows returned ...

.

1 The terms are displayed by using the Composite Description Views described in the previous section.
2 The prefix snap is replaced by snap1 or snap2 for retrospective views.
3 Transitive closure and proximal primitive views are only available for the current snapshot. [a b]

4.8.4. Composite Relationship Views

The composite relationship views display active, inferred defining relationships of specified concepts accompanied
by human-readable terms for each the selected concepts 1 .

Defining Relationship View
For each snapshot view the SNOMED CT example database there are two view of the active, inferred defining
relationships. The views select the id and either the fully specified name or preferred synonym for the concept
identified in each of the defining columns (sourceId, typeId and destinationId). The characteristics of these views
are shown in Table 4.8.4-1 and a general template for the SQL definitions of these views is shown in Template
4.8.4-1. To create each of the views named in the table, the placeholders for {termtype} need to be replaced with
values in the Specific Settings column of the table.

Example 4.8.4-1 demonstrates the use of these views to select the active defining relationships of a specified
concept with the id and preferred term for each of the referenced concepts.

Table 4.8.4-1: Composite Views of Supertype Parents and Subtype Children

Name
2 Description Specific

Settings

{termtype}

snap_rel_def_fsn This view includes all active, inferred relationships of a concept specified by sourceId 3 . It selects the id
and fully specified name for each of the concept identifiers (sourceId, typeId and destinationId) and the
relationshipGroup number.

fsn

snap_rel_def_pref This view includes all active, inferred relationships of a concept specified by sourceId 3 . It selects the id
and fully specified name for each of the concept identifiers (sourceId, typeId and destinationId) and the
relationshipGroup number.

pref

Template 4.8.4-1: SQL Templates for Composite Views of Defining Relationships

CREATE VIEW `snap_rel_def_{viewtype}` AS
(SELECT `r`.`sourceId` `sourceId`,`src`.`Term` `sourceTerm`,`r`.`typeId`
`typeId`,`typ`.`Term` `typeTerm`,`r`.`destinationId` `destinationId`,`dest`.`Term`
`destinationTerm`,`r`.`relationshipGroup` `relationshipGroup`
 FROM (((`snap_relationship` `r`
 JOIN `snap_{viewtype}` `src` ON ((`r`.`sourceId` = `src`.`conceptId`))) JOIN
 `snap_{viewtype}` `typ` ON ((`r`.`typeId` = `typ`.`conceptId`))) JOIN
 `snap_{viewtype}` `dest` ON ((`r`.`destinationId` = `dest`.`conceptId`))) WHERE
 ((`r`.`active` = 1) AND (`r`.`characteristicTypeId` = 900000000000011006)));

Example 4.8.4-1: Selecting Supertype Parents and Subtype Children

SQL Query

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 42

Select * from snap_rel_def_pref where sourceId=6025007;

Result

sourceI

d

sourceTerm typeId typeTerm destinatio

nId

destinationTerm relationshi

pGroup

602500
7

Laparoscopic appendectomy 1166800
03

Is a 51316009 Laparoscopic procedure 0

602500
7

Laparoscopic appendectomy 1166800
03

Is a 80146002 Appendectomy 0

602500
7

Laparoscopic appendectomy 1166800
03

Is a 264274002 Endoscopic operation 0

602500
7

Laparoscopic appendectomy 1166800
03

Is a 440588003 Endoscopic procedure on appendix 0

602500
7

Laparoscopic appendectomy 2606860
04

Method 129304002 Excision - action 1

602500
7

Laparoscopic appendectomy 4058130
07

Procedure site -
Direct

66754008 Appendix structure 1

602500
7

Laparoscopic appendectomy 4253910
05

Using access
device

86174004 Laparoscope 1

1 The terms are displayed by using the Composite Description Views described in an earlier section of this guide.
2 The prefix snap is replaced by snap1 or snap2 for retrospective views.
3 The selection criteria for any of these relationship views can also be specified by destinationId, typeId or by a

combination of these identifiers. However, to see all the defining relationships of a specified concept, the
sourceId should be used as this refers to the concept defined by the relationships. [a b]

4.8.5. Composite Historical Views

Inactive Concept Views
For each delta and snapshot view the SNOMED CT example database includes a view of inactive concepts. The
characteristics of each of these views are shown in Table 4.8.5-1 and a general template for the SQL definitions of
these views is shown in Template 4.8.5-1. To create each of the views named in the table, the placeholders
for {myph} need to be replaced with values in the Specific Settings column of the table.

Example 4.8.5-1 demonstrates the use of these views to show all the active descriptions of a specified concept that
are acceptable or preferred according to the language reference set referenced by the configuration file.

Table 4.8.5-1: Composite Views of Inactive Concepts with Related Concept Inactivation and
Historical Association Refset Data

Name
1 Description

delta_inactive_conce
pts

This view selects details of concepts that are inactive in the chosen delta or snapshot view. In addition to the concept
id the fully specified name of the inactive concept is selected. The output of this view also includes the reason for
activation and any historical associations between this inactive concept and an active concept. The reason for
inactivation is shown as the preferred synonym for the concept representing the reason for inactivation in the concept
inactivation reference set. The historical association is represented by the preferred synonym of the association
reference set(s) and the fully specified name of the associated target concept. Where a concept has multiple active
associations each of these reported as a separate row (the inactive concept and inactivation reason data is duplicated
on each of these rows).

Template 4.8.5-1: SQL Definition of the Inactive Concepts View

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 43

CREATE VIEW delta_inactive_concepts AS
select `c`.`id`, `c`.`effectiveTime`, `c`.`active`, `c`.`definitionStatusId`,
`cf`.`term` 'FSN',
 `vp`.`term` 'reason', `arp`.`term` 'assoc_type', `atf`.`id` 'ref_conceptId',
`atf`.`term` 'ref_concept_FSN'
from `delta_concept` `c`
left join `snap_fsn` `cf` ON `cf`.`conceptid`=`c`.`id`
left outer join `snap_refset_attributevalue` `v` on
 `v`.`referencedComponentId`=`c`.`id`
 and `v`.`refsetId`=900000000000489007 and `v`.`active`=1
left outer join `snap_pref` `vp` on `vp`.`conceptid`=`v`.`valueid`
left outer join `snap_refset_association` `a` on `a`.`referencedComponentId`=`c`.`id`
and `a`.`refsetId` IN
 (900000000000528000, 900000000000523009, 900000000000527005,
900000000000526001,
 900000000000525002, 900000000000531004, 900000000000524003,
900000000000530003) and `a`.`active`=1
left outer join `snap_pref` `arp` on `arp`.`conceptid`=`a`.`refsetId`
left outer join `snap_fsn` `atf` on `atf`.`conceptid`=`a`.`targetComponentId`
where `c`.`active`=0
order by `c`.`id`;

Example 4.8.5-1: Selecting Inactive Concepts with Related Concepts Inactivation and
Historical Association Refset Data

SQL Query

SELECT * FROM delta_inactive_concepts;

Result (example rows only)

id effectiv
eTime

acti
ve

definitionSta
tusId

FSN reason assoc_typ
e

ref_con
ceptId

ref_concept_FSN

1192
004

201907
31

0 90000000000
0074008

Familial amyloid
neuropathy, Finnish
type (disorder)

Outdated REPLACED
BY

3757892
013

Hereditary gelsolin amyloidosis (disorder)

1230
003

201907
31

0 90000000000
0074008

No diagnosis on Axis I
(finding)

Outdated REPLACED
BY

6777810
11

Psychological finding (finding)

1427
008

201907
31

0 90000000000
0074008

Intraspinal abscess
(disorder)

Duplicate SAME AS 7432970
13

Spinal cord abscess (disorder)

2461
007

201907
31

0 90000000000
0074008

Tennis elbow test
(procedure)

Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

3777085
015

Lateral epicondylitis test (procedure)

2900
003

201907
31

0 90000000000
0074008

Hyperplasia of renal
artery (disorder)

Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

3760067
011

Fibromuscular dysplasia of wall of renal
artery (disorder)

3105
002

201907
31

0 90000000000
0074008

Intron (finding) Outdated REPLACED
BY

6976430
16

Finding related to molecular sequence
data (finding)

3221
003

201907
31

0 90000000000
0074008

Ringer's solution
(product)

Nonconfo
rmance to
editorial
policy
compone
nt

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 44

3734
003

201907
31

0 90000000000
0074008

Split thickness skin graft
(procedure)

Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

3758568
011

Split thickness graft of skin to skin
(procedure)

4101
004

201907
31

0 90000000000
0074008

Revision of spinal
pleurothecal shunt
(procedure)

Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

6189420
15

Revision of spinal subarachnoid shunt
(procedure)

4101
004

201907
31

0 90000000000
0074008

Revision of spinal
pleurothecal shunt
(procedure)

Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

6186810
17

Revision of subdural-pleural shunt
(procedure)

4131
005

201907
31

0 90000000000
0074008

Implantation into pelvic
region (procedure)

Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

2968044
014

Procedure on pelvic region of trunk
(procedure)

4131
005

201907
31

0 90000000000
0074008

Implantation into pelvic
region (procedure)

Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

3756616
019

Implantation procedure (procedure)

4518
006

201907
31

0 90000000000
0074008

Buthenal (substance) Ambiguou
s

POSSIBLY
EQUIVALE
NT TO

7969840
14

Crotonaldehyde (substance)

4919
007

201907
31

0 90000000000
0074008

Congenital protrusion
(morphologic
abnormality)

Duplicate SAME AS 6421120
18

Protrusion (morphologic abnormality)

5034
009

201907
31

0 90000000000
0074008

Graft to hair-bearing
skin (procedure)

Duplicate SAME AS 3757739
014

Hair bearing graft of skin to skin
(procedure)

Inactive Descriptions
For each delta and snapshot view the SNOMED CT example database includes a view of inactive descriptions. The
characteristics of each of these views are shown in Table 4.8.5-2 and a general template for the SQL definitions of
these views is shown in Template 4.8.5-2. To create each of the views named in the table, the placeholders
for {myph} need to be replaced with values in the Specific Settings column of the table.

Example 4.8.5-2 demonstrates the use of these views to show all the active descriptions of a specified concept that
are acceptable or preferred according to the language reference set referenced by the configuration file.

Table 4.8.5-2: Composite Views of Inactive Descriptions with Related Description
Inactivation and Historical Association Refset Data

Name
2 Description

delta_inactive_descr
iptions

This view selects details of all descriptions that are inactive in the chosen delta or snapshot view. In addition to
selecting the description data it also includes the active fully specified name of the related concept and the reason for
activation. The reason for inactivation is shown as the preferred synonym for the concept representing the reason for
inactivation in the description inactivation reference set.

Template 4.8.5-2: SQL Definition of the Inactive Descriptions View

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 45

CREATE VIEW delta_inactive_descriptions AS
select `d`.`id`, `d`.`effectiveTime`, `d`.`active`, `d`.`conceptid`, `d`.`term`
'term',
 `df`.`term` 'concept_fsn', `c`.`active` 'concept_active' ,`vp`.`term`
'reason'
from `delta_description` `d`
left outer join `snap_fsn` `df` ON `df`.`conceptid`=`d`.`conceptid`
join `snap_concept` `c` ON `c`.`id`=`d`.`conceptid`
left outer join `snap_refset_attributevalue` `v` on
 `v`.`referencedComponentId`=`d`.`id`
 and `v`.`refsetId`=900000000000490003 and `v`.`active`=1
left outer join `snap_pref` `vp` on `vp`.`conceptid`=`v`.`valueid`
where `d`.`active`=0
order by `d`.`id`;

Example 4.8.5-2: Selecting Inactive Descriptions with Related Description Inactivation Refset
Data

SQL Query

SELECT * FROM delta_inactive_descriptions;

Result (example rows only)

id effectiv

eTime

act

ive

conce

ptid

term concept_fsn concept

_active

reason

14132
019

201907
31

0 79380
06

D-Arabinitol
dehydrogenase

D-arabinitol 4-dehydrogenase
(substance)

1 Nonconformance to editorial policy
component

16101
018

201907
31

0 91560
01

Embryo stage 1 Structure of embryo at stage 1
(body structure)

1 Nonconformance to editorial policy
component

16837
014

201907
31

0 96310
08

Rheumatoid spondylitis Ankylosing spondylitis (disorder) 1 Not semantically equivalent
component

17234
017

201907
31

0 98710
00

D-Amino-acid
acetyltransferase

D-amino-acid N-
acetyltransferase (substance)

1 Nonconformance to editorial policy
component

17525
014

201907
31

0 10043
003

D-Alanine-alanyl-
poly(glycerolphosphate)
ligase

D-alanine-alanyl-
poly(glycerolphosphate) ligase
(substance)

1 Nonconformance to editorial policy
component

17526
010

201907
31

0 10043
003

D-Alanyl-alanyl-
poly(glycerolphosphate)syn
thetase

D-alanine-alanyl-
poly(glycerolphosphate) ligase
(substance)

1 Nonconformance to editorial policy
component

17527
018

201907
31

0 10043
003

D-Alanine:membrane-
acceptor ligase

D-alanine-alanyl-
poly(glycerolphosphate) ligase
(substance)

1 Nonconformance to editorial policy
component

17615
010

201907
31

0 10093
004

Anisakiasis due to Anisakis
simplex

Anisakiasis caused by larva of
Anisakis simplex (disorder)

1 Erroneous

20220
015

201907
31

0 11702
002

bis-(p-Chlorophenyl)
ethanol

Bis-(p-chlorophenyl) ethanol
(substance)

1 Nonconformance to editorial policy
component

20469
015

201907
31

0 11860
003

Nannizzia Genus Arthroderma (organism) 1 Not semantically equivalent
component

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 46

4.9. Stored Procedures

4.9.1. General Characteristics of Stored Procedures
As noted in 4.6. Enabling Versioned Views, database views allow useful queries to be saved and reused as though
they were database tables. The SQL queries used in a view can be complex and can include data from other views
such as those described in 4.8. Composite Views. However, the definition of each view is defined by a single SQL
query.

Stored procedures and functions provide an another way to define reusable resources in a database. The key
difference between these database views, stored procedures and functions are summarized in Table 4.9.1-1 1 .
From a practical perspective these differences enable stored procedures to facilitate some types of access to a
SNOMED CT data that cannot be supported by using database views. The following subsections describe a few
examples of stored procedures that are included in the SNOMED CT example database.

Table 4.9.1-1: Features of Views, Stored Procedures and Functions (in MySQL)

Feature Database View Stored Procedure Stored Function

Enable definition of reusable resources that facilitate commonly
required processes that access data without

Defined by a single query

Produce output that can queried in the same way as a database table

Can be defined to output the results of a single SQL query

Can be defined to output the results of one or more SQL queries

Can be defined to add, delete or alter data in a table 2

Can be defined to include transactional SQL statements 2

Can create, alter or delete database tables, views, procedures or
functions 2

Can be defined with input parameters to be set when invoked with
values that affect the results

Can be defined to set values the values of one or more output
parameters

Can be defined to return a single value of a specified datatype

1 The features of stored procedures and functions shown in the table are those that apply to MySQL. Some of
these features may differ in other database environments.

2 Access to features that make changes to data or database resources may be limited by database security
settings. [a b c]

4.9.2. Configuration Procedures
The SNOMED CT example database, has includes configuration settings that control configurable aspects of
versioned table views (see 4.6.2. Versioned Database Table Views). The configuration settings also affect queries,
composite views and procedures that refer to configurable versioned table views.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 47

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

The configuration settings are represented by a database table called config_settings and each of the procedures
described in this section either selects data from that table or updates data in the table. The details and default
settings of the config_settings table are shown in Table 4.9.2-1.

Table 4.9.2-1: Configuration Table Specification and initial settings

Column Description Datatype Permitted Values Default Values

id Identifies the configuration setting and links to directly to
view name prefixes

id=0 refers to snap and delta views (the time
values are fixed for these views)
id=1 refers to snap1 and delta1 views
id=2 refers to snap2 and delta2 views

TINYINT Integer in range 0-255 0, 1, 2

language
Id

The refsetId of a language reference set. BIGINT Any language refsetId (e.g.
900000000000509007,
900000000000508004)

900000000000509007

language
Name

The name of the language represented by the language
reference set identified by languageId.

VARCHAR
(255)

The name of any language or
dialect represented by a
language refset (e.g. US
English, GB English).

US English

snapshot
Time

The snapshotTime for views with the relevant view name
prefix 1 .

DATETIM
E

Id=0: Release date
(fixed)
Id>1: Any valid
date.

Id=0: Release
date
Id=1: Six
months before
release date
Id=2: One year
before release
date.

deltaStar
tTime

The effectiveTime of a component or refset member row
must be greater than deltaStartTime to be included in the
delta view with the relevant prefix 1 .

DATETIM
E

Id=0: Six months
before release date
(fixed)
Id>1: Any valid
date before the
release date.

Id=0: Six
months before
release date
Id=1: One year
before release
date
Id=2: Eighteen
months before
release date.

deltaEnd
Time

The effectiveTime of a component or refset member row
must be less than or equal to the deltaStartTime to be
included in the delta view with the relevant prefix 1 .

DATETIM
E

Id=0: Release date
(fixed)
Id>1: Any valid
date after the
deltaStartTime.

Release
DateTime
(fixed)
Id=1: Six
months before
release date
Id=2: One year
before release
date.

Show Configuration Procedure
The showConfig procedure selects and displays the configuration files data.

Example 4.9.2-1: Using the showConfig Procedure

SQL Call to Procedure

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 48

call showConfig();

Result
2

i

d

languageId language

Name

refsetName
3 snapshotT

ime

deltaStart

Time

deltaEnd

Time

0 90000000000
0509007

US
English

United States of America English language reference set (foundation
metadata concept)

2019-07-31 2019-01-31 2019-07-3
1

1 90000000000
0509007

US
English

United States of America English language reference set (foundation
metadata concept)

2019-01-31 2018-07-31 2019-01-3
1

2 90000000000
0509007

US
English

United States of America English language reference set (foundation
metadata concept)

2018-07-31 2018-01-31 2018-07-3
1

Set Language
The setLanguage procedure sets the languageId and languageName for a configuration row specified by its
identifier value.

SQL Call to Procedure

call setDeltaRange(p_id,p_deltaStartTime,p_deltaEndTime);

Parameter Description Data

type

Valid values Example

p_id The identifier of the configuration table view (also
the number of the snapshot or delta view number to
which the setting applies).

TINYI
NT

0, 1 or 2 1

p_lang_code The date after which changes will be included in the
delta view.

VARC
HAR(5
)

Any value that MySQL recognizes
as a date or date-time.

'en-GB'

Example Procedure Call

call setLanguage(1,'en-GB');

Result

If p_lang_code does not refer to a language code in the config_language file or if no valid refset or refset members are found the procedure
reports an error.

If the procedure succeeds, the language setting is changed but there is no output data. To check the result of the change, call showConfig()
after resetConfig.

Set Snapshot Time
The setDeltaRange procedure sets the snapshotTime for a configuration row specified by its id value.

SQL Call to Procedure

call setDeltaRange(p_id,p_snapshotTime,p_deltaEndTime);

1.
2.

3.

Languages can only be set if the following conditions apply.
The concept identifying the language reference set is available in the database.
The language abbreviation, language name and the identifier of the language reference set are in
the config_language table.
The identified language reference set is available in the snap_refset_language reference set table
or view.

ÿ

The language setting
can be changed for
the id=0 row.

ÿ

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 49

Parameter Description Data

type

Valid values Example

p_id The identifier of the configuration table view (also
the number of the snapshot or delta view number to
which the setting applies).

TINYI
NT

1 or 2

(Note: Values less than 1 or
greater than 2 will be treated as
referring to row 2)

1

p_snapshot
Time

The date for which the identified snapshot view will
be computed.

DATE
TIME

Any value that MySQL recognizes
as a date or date-time.

'2017-07-31'

Example Procedure Call

call setSnapshotTime(1,'2017-07-31');

Result

The snapshotTime setting is changed but there is no output data. To check the result of the change, call showConfig() after resetConfig.

Set Delta Range
The setDeltaRange procedure sets the deltaStartTime and deltaEndTime for a configuration row specified by its id
value.

SQL Call to Procedure

call setDeltaRange(p_id,p_deltaStartTime,p_deltaEndTime);

Parameter Description Data

type

Valid values Example

p_id The identifier of the configuration table view (also
the number of the snapshot or delta view number to
which the setting applies).

TINYI
NT

1 or 2

(Note: Values less than 1 or
greater than 2 will be treated as
referring to row 2)

1

p_deltaStartTim
e

The date after which changes will be included in the
delta view.

DATE
TIME

Any value that MySQL recognizes
as a date or date-time.

'2016-07-31'

p_deltaEndTime The date on or before which changes with be
included in the delta view.

DATE
TIME

Any value that MySQL recognizes
as a date or date-time.

'2019-01-31'

Example Procedure Call

call setDeltaRange(1,'2016-07-31','2017-07-31');

Result

The deltaStartTime and deltaEndTime settings are changed but there is no output data. To check the result of the change, call showConfig()
after resetConfig.

Reset Configuration
The resetConfig procedure resets all the configuration settings to the default values shown in Table 4.9.2-1.

SQL Call to Procedure

The reset depends on the date times config_settings on the row with id=0 being unchanged. In particular,
if assumes the snapshotTime of that row as the releaseDate. The other procedures described in this
section do not change those values. However, if those values are changed by update queries the
resetConfig procedure will not correctly reset the snapshot and delta times.

\

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 50

call resetConfig();

.

Result

The reset is performed but there is no output data. To check the result of the reset, call showConfig() after resetConfig.

1 Internally all these configuration dates are stored as the time 23:59:59 on the stated date. This ensure all
changes on the end date are included in snapshot and delta views while all changes on the start date are
excluded from a delta view. [a b c]

2 The results shown here are those the initial default settings for the 2019-07-31 release.
3 The refsetName is selected by looking up the languageId in the snap_fsn view.

4.9.3. Language and Dialect Comparison Procedures

Terms in Languages
The termsInLanguages procedure displays the terms associated with a list of selected concepts in one or more
specified languages or dialects. The concepts to be selected are specified by a comma-separated list of conceptIds
and the languages in which they are to be displayed are specified by a comma-separated list of language codes.

Example 4.9.3-1: Example Use of termsInLanguages Procedure

SQL Call to Procedure

call snap_termsInLanguages(p_conceptids,p_langCodes);

Parameter Description Data

type

Examples

p_concep
tids

A string containing a comma separated list
of concept identifiers.

text '80146002,49438003'

p_langCo
des

A string containing a comma separated list
of language codes.

text 'en-GB,en-US'

Example Procedure Call

call snap_ShowLanguages('80146002,49438003','en-GB,en-US');

Result

conceptId type_and_lang term

Only languages and dialects in
the release files can be selected.
With the International Release
can be tested with p_langCode
set to 'en-GB,en-US'.
If other description files with
terms in other languages are
imported along with the
relevant language refsets then
these languages will also be
accessible.

ÿ

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 51

80146002 FSN en-GB Excision of appendix (procedure)

80146002 Preferred en-GB Appendicectomy

80146002 Synonyms en-GB Excision of appendix

80146002 FSN en-US Excision of appendix (procedure)

80146002 Preferred en-US Appendectomy

80146002 Synonyms en-US Excision of appendix

49438003 FSN en-GB Appendectomy with drainage (procedure)

49438003 Preferred en-GB Appendicectomy with drainage

49438003 Synonyms en-GB Appendicectomy and drainage

49438003 FSN en-US Appendectomy with drainage (procedure)

49438003 Preferred en-US Appendectomy with drainage

49438003 Synonyms en-US Appendectomy and drainage

4.9.4. Search Procedures

Search Plus Procedure
The searchPlus procedure lists the conceptId and terms that match a search pattern. The search matches can also
be filtered using a simple focus concept expression constraint or a regular expression pattern.

Example 4.9.4-1: Example Use of searchPlus Procedure

SQL Call to Procedure

call snap_searchPlus(p_search, p_filter);

Param

eter

Description Da

ta

ty

pe

Examples

p_sear
ch

A search term string.

These searches use MySQL's fulltext index employing one of the two supported search modes
depending on the string supplied.

If p_search includes plus "+" or minus "-" symbols, the search is performed using boolean mode.
This means matches are only returned if all words preceded by "+" are present and none of the
words "-". Word not preceded by either plus or minus, are not required to match but will
contribute to the search. The results of this search are sorted by with the shortest matching terms
first.

If p_search does not include "+" or "-" symbols, the MySQL natural language search is used. It also
orders the returned results by 'relevance' and is intended to assist contextual searching through
literature. However, our testing indicate that the boolean mode is usually more effective for
SNOMED CT searches.

For more information about full text searches in MySQL please see Full-Text Search Functions in
the MySQL Reference Manual.

tex
t

'+fundus +stomach'

'+lung +disease +chronic'

'appendix'

'hemoglobin'

'infection'

Note

This procedure is intended to demonstrate some of the search options available in MySQL and to illustrate
the value of restricting searches to subtypes of concepts that in particular hierarchies or sub-hierarchies.
Additional work would be required to make a more user-friendly interface to these search facility and this
is beyond the scope of the SNOMED CT example database.

ÿ

https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 52

•

•

•

p_filte
r

A filter that will be applied to selectively include concepts that are subtype descendants of a
specified concept:

a simple focus concept subtype constraint.
Starting with a less than sign < followed either by either

a conceptId; or
a shortcut abbreviation for a commonly used
concept. To see the current set of shortcuts run the
following query "SELECT * FROM
config_shortcutPlus;"

A regular expression pattern to be used to filter terms returned by the search string

a regular expression to exclude matching terms
Starting this with an exclamation mark ! followed by the
regular expression you want to exclude for the terms found by
p_search.

a regular expression required for inclusion
The text of the regular expression that must be matched for
inclusion.

tex
t

'<find'

'<proc'

'<123037004'

'!lung'

'heart'

Example Procedure Call

call snap_searchPlus('+viral +infection','< 19829001 |disorder of lung|');

Result

conce

ptId

term

75570
004

Viral pneumonia

27669
2000

Congenital viral pneumonia

75570
004

Viral pneumonia (disorder)

42150
8002

Viral pneumonia associated with AIDS

27669
2000

Congenital viral pneumonia (disorder)

42150
8002

Viral pneumonia associated with acquired immunodeficiency syndrome

42150
8002

Viral pneumonia associated with acquired immunodeficiency syndrome (disorder)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 53

4.9.5. Expression Constraint Procedures

ECL Query Procedure

The eclQuery lists the conceptId and preferred term for each concept that conforms to a specified SNOMED
CT expression constraint.

Example 4.9.5-1: Example Use of eclQuery Procedure

SQL Call to Procedure

call snap_eclQuery(p_ecl);

Parameter Description Data type Examples

p_ecl The ECL query text text (< 19829001 |disorder of lung|) OR (< 301867009 |edema of
trunk|)

'(< 19829001 |disorder of lung|) MINUS (< 301867009 |
edema of trunk|)'

'>> 40541001 |Acute pulmonary edema|'

'>39057004 |pulmonary valve|'

'>!39057004 |pulmonary valve|'

Example Procedure Call

call snap_eclQuery('< 19829001 |disorder of lung|:116676008 |Associated morphology|
= 40829002 |Acute edema|');

Result

conceptId term

10519008 Acute pulmonary oedema due to fumes AND/OR vapours

40541001 Acute pulmonary oedema

61233003 Silo-fillers' disease

233706004 Drug-induced acute pulmonary oedema

233709006 Toxic pulmonary oedema

233710001 Chemical-induced pulmonary oedema

233711002 Oxygen-induced pulmonary oedema

360371003 Acute cardiac pulmonary oedema

10674871000119105 Pulmonary oedema caused by chemical fumes

Expression Constraint Feature Support and Limitations
The following notes provide a brief summary of the extent to which this procedure supports evaluation of
expression constraints. For a full and detailed understanding of SNOMED CT expression constraints see the
specification of the SNOMED CT Expression Constraint Language.

1.

2.

Notes

The expression constraints supported do not cover the full ECL specification but are restricted as
described below.
This procedure will only run in MySQL version 8.0 or later. It uses some function which are not
available in earlier versions (including the widely used MySQL version 5.7).

ÿ

https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+expression+constraint
https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+expression+constraint
https://confluence.ihtsdotools.org/display/SLPG/SNOMED+CT+Expression+Constraint+Language

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 54

•

•

•
•

•

ECL Operators and Examples

ECL Operator Summary Example

Symbol Name

< Descendant of The set of all subtypes of the given concept < 404684003 |Clinical finding|

<< Descendant or self of The set of all subtypes of the given concept plus
the concept itself

<< 73211009 |Diabetes mellitus|

> Ancestor of The set of all supertypes of the given concept > 40541001 |Acute pulmonary edema|

>> Ancestor or self of The set of all supertypes of the given concept
plus the concept itself

>> 40541001 |Acute pulmonary edema|

<! Child of The set of all children of the given concept <! 195967001 |Asthma|

>! Parent of The set of all parents of the given concept >! 195967001 |Asthma|

^ Member of The set of referenced components in the given
reference set

^ 733990004 |Nursing activities reference set|

* Any Any concept in the given SNOMED CT edition *

: Refinement Only those concepts whose defining
relationships match the given attribute value
pairs

< 404684003 |clinical finding|: 116676008 |
associated morphology| = *

AND Conjunction Only those concepts in both sets (< 19829001 |disorder of lung|) AND (< 301867009
|edema of trunk|)

OR Disjunction Any concept that belongs to either set (< 19829001 |disorder of lung|) OR (< 301867009 |
edema of trunk|)

MINUS Exclusion Concepts in the first set that do not belong to the
second set

(< 19829001 |disorder of lung|) MINUS (<
301867009 |edema of trunk|)

Additional Notes on Limitations of the ECL Query Procedure
The following notes outline the extent to which this procedure supports the SNOMED CT expression constraints and
highlights some of the most significant limitations of this procedure.

One or more constraints can be specified.
Each constraint must start with a focus concept constraint expressed as one of the following:

A single conceptId specifying that concept as the focus concept.
A single conceptId preceded by < (specifying subtypes only) or << (specifying self or subtypes)
A conceptId that identifies a reference set preceded by a ^ indicating members of that reference set.
An asterisk * (indicating any concept)

In all cases a concept Id may be followed by a term surrounded by pipe characters.
The term between pipes will be ignored for processing.

Spaces between any elements in the expression will be ignored
The focus constraint may optionally be followed by a refinement constraint separated from the focus
constraint by a colon :

If present the refinement constraint must consist of one or more attribute-value-constraint
pairs.

The pair consists of an attribute-constraint and a value-constraint:

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 55

•

•

•
•

•

i.
1.
2.
3.
4.

ii.
1.
2.
3.
4.

•
•
•
•
•

•

The attribute-constraint must be separated from the value constraint by an = (equals) sign
Both the constraints may be specified using any of the forms permitted for the focus concept
constraint (see 1)

Attribute attribute-value-constraint pairs must be separated by a comma from any following attribute-
value-constraint pair
NOTE: The procedure does not support:

Nested refinement constraints
Role grouping constraints
Cardinality constraints

If more than one constraint is specified:
Each constraint must be enclosed in brackets
One of the following logical operators must be present between adjacent constraints

OR The resulting set is the set of concepts that conform to either the constraint to the left or the
constraint to the right (or both constraint).
AND The resulting set is the set of concepts that conform to both the constraint to the left and the
constraint on the right.
MINUS The resulting set is the set of concepts that both conform to the constraint to the left and do n
ot conform to the constraint on the right.

NOTE: The procedure does not support the use of brackets to alter the order of evaluation of constraints in
a set.
The set of constraints is evaluated from left to right and, as illustrated below, this is likely to affect the
results.

(A) OR (B) AND (C) MINUS (D)

Concepts in either (A) or (B) form temporary set (aT1)
Concepts in (aT1) and also in (C) form temporary set (aT2)
Concepts in (aT2) that are NOT in (D) form the final result set (aR)
One outcome of this order is that concepts in (B) that are not in (C) or are in (D) will not
appear in the result set.

(A) MINUS (D) AND (C) OR (B)

Concepts in (A) and NOT in (D) form temporary set (bT1)
Concepts in (bT1) and also in (C) form temporary set (bT2)
Concepts in either (bT2) or (B) for the final result set (bR)
In this order all concepts that are in (B) with me in the result set.

Summary of Limitations of ECL Support for this Procedure
The Procedure does not support:

Nested constraints
Dotted attributes
Nested refinement constraints
Attribute group constraints
Cardinality constraints

The Procedure also requires that:

Even simple expression constraints must be enclosed by brackets when multiple constraints are combined.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 56

•
•
•
•
•

1.
2.

3.

4.

5. Creating and Populating a SNOMED CT Database

5.1. Creating the Database
The first step is to create the database schema. The code below is an excerpt from the SNOMED CT example
database MySQL import script which carries out the following steps:

Creates a database called "snomedct"
Sets the default character set of the database as "utf8mb4"
Sets snomedct as the default database for the following script.
Sets timeouts appropriate to the import process.
Clears sql_mode settings some of which, if present, may cause import issues.

Create SNOMED CT Database

DELIMITER ;
SELECT Now() `--`,"Create Database and Initialize" '--';
-- CREATE DATABASE
DROP DATABASE IF EXISTS `snomedct`;
CREATE DATABASE `snomedct` /*!40100 DEFAULT CHARACTER SET utf8mb4 */;
USE `snomedct`;
-- INITIALIZE SETTINGS
SET GLOBAL net_write_timeout = 60;
SET GLOBAL net_read_timeout=120;
SET GLOBAL sql_mode ='';
SET SESSION sql_mode ='';

5.2. Creating Tables for Components

Introduction
This section contains SQL statements that create database tables to accommodate the data in each of the main
component files. Each table creation is accompanied by a summary of the relevant release file specification.

Notes

The symbol in the top right of each file specification summary table is a link to the full file specification.
The table names used on this page are prefixed with full_ as these are the tables into which the full SNOMED
CT release will be imported. The loader script also create identically structured tables with the prefix
snap_ and the latest snapshot view is loaded into those tables.
The SQL code on this page creates the primary keys for each table (id, effective time) but omits creation of
any other indexes. The loader script creates additional indexes after importing data into the table. This
enables faster importing of data from the text files as the additional indexes do not need to be updated
while importing.
The effectiveTime is set as a DATETIME data type. This supports a specific time in hours, minutes or seconds.
In practice, effectiveTime values are formally restricted to YYYYMMDD but we are aware of at least one
SNOMED CT extension that includes time units in the effectiveTime field or its release files. The effectiveTime

Tip

This chapter contains excerpts from the SQL script used to build and populate the SNOMED CT example
database. The full SQL script can be found in the sct_mysql_loader_VP_latest.sql file. This is in the
mysql_load subfolder of the SnomedRfsMySql.zip package.

https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+extension
https://confluence.ihtsdotools.org/download/attachments/96805459/SnomedRfsMySql.zip?api=v2&modificationDate=1574677599404&version=6

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 57

5.

is set by default to a 2000-01-31, a date which predates any SNOMED CT effectiveTime value. In practice, the
effectiveTime will always be set by the imported data so the default has no material effect.
Tables are also created for the full_textDefinition table and its snapshot version. As these tables have the
same structure as the description tables, the data from the textDefinition release files could be imported
into those tables instead. The text definitions would still be distinguishable from the descriptions as they
have a different typeId.

Creating a Concept Table

Create Concept Table

DROP TABLE IF EXISTS `full_concept`;

CREATE TABLE `full_concept` (
 `id` BIGINT NOT NULL DEFAULT 0,
 `effectiveTime` DATETIME NOT NULL DEFAULT '2000-01-31 00:00:00',
 `active` TINYINT NOT NULL DEFAULT 0,
 `moduleId` BIGINT NOT NULL DEFAULT 0,
 `definitionStatusId` BIGINT NOT NULL DEFAULT 0,
 PRIMARY KEY (`id`,`effectiveTime`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8mb4;

Table 5.2-3: Concept File Specification Summary

Field Data type

id SCTID

effectiveTime Time

active Boolean

moduleId SCTID

definitionStatusId SCTID

https://confluence.ihtsdotools.org/display/DOCRELFMT/4.2.1+Concept+File+Specification
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/effectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/active+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/moduleId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/definitionStatusId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 58

Creating a Description Table

Create Description Table

DROP TABLE IF EXISTS `full_description`;

CREATE TABLE `full_description` (
 `id` BIGINT NOT NULL DEFAULT 0,
 `effectiveTime` DATETIME NOT NULL DEFAULT '2000-01-31 00:00:00',
 `active` TINYINT NOT NULL DEFAULT 0,
 `moduleId` BIGINT NOT NULL DEFAULT 0,
 `conceptId` BIGINT NOT NULL DEFAULT 0,
 `languageCode` VARCHAR (3) NOT NULL DEFAULT '',
 `typeId` BIGINT NOT NULL DEFAULT 0,
 `term` TEXT NOT NULL,
 `caseSignificanceId` BIGINT NOT NULL DEFAULT 0,
 PRIMARY KEY (`id`,`effectiveTime`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8mb4;

Table 5.2-3: Description File Specification Summary

Field Data type

id SCTID

effectiveTime Time

active Boolean

moduleId SCTID

conceptId SCTID

languageCode String

typeId SCTID

term String

caseSignificanceId SCTID

https://confluence.ihtsdotools.org/display/DOCRELFMT/4.2.2+Description+File+Specification
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/effectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/active+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/moduleId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/String+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/typeId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/WIPRELFMT/term+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/String+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/caseSignificanceId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 59

Creating a Relationship Table

Create Relationship Table

DROP TABLE IF EXISTS `full_relationship`;

CREATE TABLE `full_textDefinition` (
 `id` BIGINT NOT NULL DEFAULT 0,
 `effectiveTime` DATETIME NOT NULL DEFAULT '2000-01-31 00:00:00',
 `active` TINYINT NOT NULL DEFAULT 0,
 `moduleId` BIGINT NOT NULL DEFAULT 0,
 `conceptId` BIGINT NOT NULL DEFAULT 0,
 `languageCode` VARCHAR (3) NOT NULL DEFAULT '',
 `typeId` BIGINT NOT NULL DEFAULT 0,
 `term` TEXT NOT NULL,
 `caseSignificanceId` BIGINT NOT NULL DEFAULT 0,
 PRIMARY KEY (`id`,`effectiveTime`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8mb4;

Table 5.2-3: Relationship File Specification Summary

Field Data type

id SCTID

effectiveTime Time

active Boolean

moduleId SCTID

sourceId SCTID

destinationId SCTID

relationshipGroup Integer

typeId SCTID

characteristicTypeId SCTID

modifierId SCTID

5.3. Creating Tables for Reference Sets

Introduction
This section contains SQL statements that create database tables to accommodate the data in some of the
reference set release files. Each table creation is accompanied by a summary of the relevant release file
specification. The selection of reference set types shown on this page is incomplete but includes at least one
example reference set that includes an additional column of each of the permitted types (componentId, string and
integer).

https://confluence.ihtsdotools.org/display/DOCRELFMT/4.2.3+Relationship+File+Specification
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/effectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/active+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/moduleId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/sourceId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/destinationId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/relationshipGroup+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Integer+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/typeId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/characteristicTypeId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/modifierId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 60

1.
2.

3.

4.

5.

Notes

The symbol in the top right of each file specification summary table is a link to the full file specification.
The table names used on this page are prefixed with full_ as these are the tables into which the full SNOMED
CT release will be imported. The loader script also create identically structured tables with the prefix
snap_ and the latest snapshot view is loaded into those tables.
The SQL code on this page creates the primary keys for each table (id, effective time) but omits creation of
any other indexes. The loader script creates additional indexes after importing data into the table. This
enables faster importing of data from the text files as the additional indexes do not need to be updated
while importing.
The SQL code used on this page does not include any additional optimizations for generating alternative
snapshot views. Optimizations discussed in this guide can be added to the tables if required. However, this
loader script creates and populates tables for both the full release and the current snapshot views.
Therefore, additional optimizations would only deliver performance benefits when querying retrospective
snapshot views. Even in this case the performance benefits for most types of query are often limited when
compared to the use of unoptimized dynamic views.
The effectiveTime is set as a DATETIME data type. This supports a specific time in hours, minutes or seconds.
In practice, effectiveTime values are formally restricted to YYYYMMDD but we are aware of at least one
SNOMED CT extension that includes time units in the effectiveTime field or its release files. The effectiveTime
is set by default to a 2000-01-31, a date which predates any SNOMED CT effectiveTime value. In previous
versions of the script defaults were set to 0000-00-00 but some SQL settings treat these as invalid dates. In
practice, the effectiveTime will always be set by the imported data so the default has no material effect.

Creating a Simple Refset Table

Create Concept Table

DROP TABLE IF EXISTS `full_refset_Simple`;

CREATE TABLE `full_refset_Simple` (
 `id` char(36) NOT NULL DEFAULT '',
 `effectiveTime` DATETIME NOT NULL
 DEFAULT '2000-01-31 00:00:00',
 `active` TINYINT NOT NULL DEFAULT 0,
 `moduleId` BIGINT NOT NULL DEFAULT 0,
 `refsetId` BIGINT NOT NULL DEFAULT 0,
 `referencedComponentId` BIGINT NOT NULL DEFAULT 0,
 PRIMARY KEY (`id`,`effectiveTime`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8mb4;

Table 5.3-4: Simple Refset File Specification Summary

Field Data type

id UUID

effectiveTime Time

active Boolean

moduleId SCTID

https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+extension
https://confluence.ihtsdotools.org/display/DOCRELFMT/5.2.1+Simple+Reference+Set
https://confluence.ihtsdotools.org/display/DOCRELFMT/UUID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/effectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/active+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/moduleId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 61

refsetId SCTID

referencedComponentId SCTID

Creating a Language Refset Table

Create Description Table

DROP TABLE IF EXISTS `full_refset_Language`;

CREATE TABLE `full_refset_Language` (
 `id` char(36) NOT NULL DEFAULT '',
 `effectiveTime` DATETIME NOT NULL
 DEFAULT '2000-01-31 00:00:00',
 `active` TINYINT NOT NULL DEFAULT 0,
 `moduleId` BIGINT NOT NULL DEFAULT 0,
 `refsetId` BIGINT NOT NULL DEFAULT 0,
 `referencedComponentId` BIGINT NOT NULL DEFAULT 0,
 `acceptabilityId` BIGINT NOT NULL DEFAULT 0,
 PRIMARY KEY (`id`,`effectiveTime`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8mb4;

Table 5.3-4: Language Refset File Specification Summary

Field Data type

id UUID

effectiveTime Time

active Boolean

moduleId SCTID

refsetId SCTID

referencedComponentId SCTID

acceptabilityId SCTID

https://confluence.ihtsdotools.org/display/DOCRELFMT/refsetId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/referencedComponentId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/5.2.4+Language+Reference+Set
https://confluence.ihtsdotools.org/display/DOCRELFMT/UUID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/effectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/active+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/moduleId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/refsetId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/referencedComponentId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/acceptabilityId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 62

Creating an Extended Map Refset Table

Create Relationship Table

DROP TABLE IF EXISTS `full_refset_ExtendedMap`;

CREATE TABLE `full_refset_ExtendedMap` (
 `id` char(36) NOT NULL DEFAULT '',
 `effectiveTime` DATETIME NOT NULL
 DEFAULT '2000-01-31 00:00:00',
 `active` TINYINT NOT NULL DEFAULT 0,
 `moduleId` BIGINT NOT NULL DEFAULT 0,
 `refsetId` BIGINT NOT NULL DEFAULT 0,
 `referencedComponentId` BIGINT NOT NULL DEFAULT 0,
 `mapGroup` INT NOT NULL DEFAULT 0,
 `mapPriority` INT NOT NULL DEFAULT 0,
 `mapRule` TEXT NOT NULL,
 `mapAdvice` TEXT NOT NULL,
 `mapTarget` VARCHAR (200) NOT NULL DEFAULT '',
 `correlationId` BIGINT NOT NULL DEFAULT 0,
 `mapCategoryId` BIGINT NOT NULL DEFAULT 0,
 PRIMARY KEY (`id`,`effectiveTime`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8mb4;

Table 5.3-4: Extended Map Refset File Specification Summary

Field Data type

id UUID

effectiveTime Time

active Boolean

moduleId SCTID

refsetId SCTID

referencedComponentId SCTID

mapGroup Integer

mapPriority Integer

mapRule String

mapAdvice String

mapTarget String

correlationId SCTID

mapCategoryId SCTID

https://confluence.ihtsdotools.org/display/DOCRELFMT/5.2.10+Complex+and+Extended+Map+Reference+Sets
https://confluence.ihtsdotools.org/display/DOCRELFMT/UUID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/effectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/active+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/moduleId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/refsetId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/referencedComponentId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/mapGroup+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Integer+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/mapPriority+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Integer+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/mapRule+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/String+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/mapAdvice+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/String+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/mapTarget+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/String+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/correlationId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/mapCategoryId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 63

Creating a Module Dependency Refset Table

Create Relationship Table

DROP TABLE IF EXISTS `full_refset_ModuleDependency`;

CREATE TABLE `full_refset_ModuleDependency` (
 `id` char(36) NOT NULL DEFAULT '',
 `effectiveTime` DATETIME NOT NULL
 DEFAULT '2000-01-31 00:00:00',
 `active` TINYINT NOT NULL DEFAULT 0,
 `moduleId` BIGINT NOT NULL DEFAULT 0,
 `refsetId` BIGINT NOT NULL DEFAULT 0,
 `referencedComponentId` BIGINT NOT NULL DEFAULT 0,
 `sourceEffectiveTime` DATETIME NOT NULL
 DEFAULT '2000-01-31 00:00:00',
 `targetEffectiveTime` DATETIME NOT NULL
 DEFAULT '2000-01-31 00:00:00',
 PRIMARY KEY (`id`,`effectiveTime`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8mb4;

Table 5.3-4: Module Dependency Refset File Specification Summary

Field Data type

id UUID

effectiveTime Time

active Boolean

moduleId SCTID

refsetId SCTID

referencedComponentId SCTID

sourceEffectiveTime Time

targetEffectiveTime Time

5.4. Importing Release Files
This section contains examples of the SQL statements used to imports data from a component release files in the
appropriate database table. Before importing the tables must be created (see 5.2. Creating Tables for
Components and 5.3. Creating Tables for Reference Sets).

Sample SQL Code for Importing from Full Release

Note

The code shown below provides illustrative examples only. For full details download an review the import
script. For details see A.1 Download the SNOMED CT Example Database Package.

ÿ

https://confluence.ihtsdotools.org/display/DOCRELFMT/5.2.12+Module+Dependency+Reference+Set
https://confluence.ihtsdotools.org/display/DOCRELFMT/UUID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/effectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/active+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Boolean+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/moduleId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/refsetId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/referencedComponentId+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/SCTID+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/sourceEffectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)
https://confluence.ihtsdotools.org/display/DOCRELFMT/targetEffectiveTime+(field)
https://confluence.ihtsdotools.org/display/DOCRELFMT/Time+(data+type)

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 64

Import Concepts from Full Release

Import Concept File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Full/
Terminology/sct2_Concept_Full_INT_[RELEASE-DATE].txt'
INTO TABLE `full_concept`
LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`definitionStatusId`);

Import Descriptions from Full Release

Import Description File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Full/
Terminology/sct2_Description_Full-en_INT_[RELEASE-DATE].txt'
INTO TABLE `full_description`
LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`definitionStatusId`);

Import Relationships from Full Release

Import Relationship File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Full/
Terminology/sct2_Relationship_Full_INT_[RELEASE-DATE].txt'
INTO TABLE `full_relationship`
LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`sourceId`,`destinationId`,`relationshipGro
up`,`typeId`,`characteristicTypeId`,`modifierId`);

Import Simple Refsets from Full Release

Import a Simple Refset File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Full/
Refset/Content/der2_Refset_SimpleFull_INT_[RELEASE-DATE].txt'
INTO TABLE `full_refset_simple`
LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`refSetId`,`referencedComponentId`);

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 65

Import Language Refsets from Full Release

Import a Language Refset File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Full/
Refset/Language/der2_cRefset_LanguageFull-en_INT_$RELDATE.txt'
INTO TABLE `full_refset_Language`
LINES TERMINATED BY '\r\n'
IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`refsetId`,`referencedComponentId`,`accepta
bilityId`);

Import Extended Map Refsets from Full Release

Import an Extended Map Refset File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Full/
Refset/Map/der2_iisssccRefset_ExtendedMapFull_INT_$RELDATE.txt'
INTO TABLE `full_refset_ExtendedMap`
LINES TERMINATED BY '\r\n'
IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`refsetId`,`referencedComponentId`,`mapGrou
p`,`mapPriority`,`mapRule`,`mapAdvice`,`mapTarget`,`correlationId`,`mapCategoryId`);

Sample SQL Code for Importing from a Snapshot Release

Import Concepts from Snapshot Release

Import Concept File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Snapshot/
Terminology/sct2_Concept_Snapshot_INT_[RELEASE-DATE].txt'
INTO TABLE `snap_concept`
LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`definitionStatusId`);

Note

The code shown below provides illustrative examples only to show the minor difference between the code
for importing the snapshot compared to the full release. For full details download an review the import
script. For details see A.1 Download the SNOMED CT Example Database Package.

ÿ

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 66

Import Simple Refsets from Snapshot Release

Import a Simple Refset File

LOAD DATA LOCAL INFILE '[RELEASE-FILE-PATH]/[RELEASE-PACKAGE-VERSION-NAME]/Snapshot/
Refset/Content/der2_Refset_SimpleSnapshot_INT_[RELEASE-DATE].txt'
INTO TABLE `snap_refset_simple`
LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
(`id`,`effectiveTime`,`active`,`moduleId`,`refSetId`,`referencedComponentId`);

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 67

•
•

•

•

•

Appendix A: Building the SNOMED CT Example Database

A.1 Download the SNOMED CT Example Database Package

Download and Unzip the SnomedRfsMySql Package
The package can be downloaded as a zip archive file SnomedRfsMySql.
Unzip this file to create a folder with called SnomedRfsMySql.

Move the SnomedRfsMySql Folder to Your Home Folder
Use Finder (or File Explorer) to move the SnomedRfsMySql folder so it becomes a subfolder of you home
folder. 1

On MacOS or other Unix based systems: /Users/your-username/SnomedRfsMySql

On Windows systems: C:\SnomedRfsMySql

1 If you prefer, you can move the SnomedRfsMySql folder to a different location. If you do this then references to
"$HOME/SnomedRfsMySql" (or "C:\SnomedRfsMySql") in the following instructions should be replaced by
references to the path to the SnomedRfsMySql folder on your system.

File Modified

 SnomedRfsMySql.zip 5 minutes ago by David Markwell

A.2 Download the Release File Package
SNOMED CT Release Packages can be obtained from the Member Licensing & Distribution Service (MLDS).

Use Finder (or File Explorer) to create a folder in your home folder called SnomedCT_ReleaseFiles 1

On MacOS or other Unix based systems: /Users/your-username/SnomedCT_ReleaseFiles

On Windows systems: C:\SnomedCT_ReleaseFiles

Download the latest SNOMED CT International Release Package (a zip archive) into your SnomedCT_Releas

eFiles folder.

1 If you prefer, you can download the SNOMED CT release package to a different location. If you do this then you
will need to specify the full path to the release package when you run the SNOMED CT load process.

•
•

Info

The SnomedRfsMySql package includes tools that are used to:
Apply the MySQL settings required by the SNOMED CT load process
Run the SNOMED CT load process.

|

https://confluence.ihtsdotools.org/download/attachments/96805459/SnomedRfsMySql.zip?api=v2&modificationDate=1574677599404&version=6
https://confluence.ihtsdotools.org/download/attachments/96805459/SnomedRfsMySql.zip?api=v2
https://confluence.ihtsdotools.org/display/~dmarkwell
https://mlds.ihtsdotools.org/#/landing

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 68

•
•

•

A.3 Instructions for Mac OS Users

The instructions in this section are specific to user of Mac OS systems.

Users of Window systems should skip to A.4 Instructions for Windows Users.

A.3.1 MySQL Installation (MacOS)

Install MySQL Community Server
Download and install the DMG Archive version of the MySQL Community Server.
During the installation process you will be prompted to provide a password for the MySQL server root
account.

Make a note of the root password - you will need to use it to load the SNOMED CT release package.

Install MySQL Workbench
Download and install the DMG Archive version of the MySQL Workbench.

A.3.2 Set Required MySQL Configuration (MacOS)

Open the Terminal Application

Type the command lines shown below into the terminal window.

Change Directories to the SnomedRfsMySql Folder

cd "$HOME/SnomedRfsMySql"

Users of other Unix based system such as Linux or Ubuntu may find some of the instructions in this section
applicable in their environment. However, the location of MySQL configuration files may differ and as a
result some aspects of the configuration process may need to be altered.

Info

The instruction in this section assume you are installing MySQL for the first time or have fully uninstalled
an earlier installation.
If MySQL is already installed you may choose to skip this section.

|

Note

if MySQL was installed using a different installation package, some of the configuration steps
described in later sections may need to be modified.
Please refer to https://www.mysql.com/products/community/ for detailed information about
MySQL.

ÿ

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/workbench/
https://www.mysql.com/products/community/

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 69

•

Make the Scripts in the bash Subfolder Executable

chmod u+x bash/*

Run snomed_config_mysql Script to Configure MySQL

sudo bash/snomed_config_mysql

Close the Terminal Application Window
You have now completed the configuration process.

Start or Restart the MySQL Server

Open the Mac OS Settings Application

Tip

If this command does reports an error, please try the following modified command, which may prompt for
your password to confirm the action:
 sudo chmod u+x bash/*

This script requires you to have administrator rights to access your computer and may prompt you to
enter your login password. If you do not have administrator rights to access your computer, you will need
to ask someone who does have those rights to run this part of the process.

|

Info

The MySQL Server must be started (or stopped and restarted) to apply the required configuration settings.
|

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 70

•

In System Preferences Search for MySQL

Click to Open the MySQL Dialog

Stop MySQL Server (if it is running)
If MySQL is running the dots are green (as shown above).

Click Stop MySQL Server and wait for the dots to turn red (as shown below).
You will be prompted for your Mac password to confirm this action.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 71

•

Start MySQL Server
When the dots are red (as above) MySQL is not running

Click Start MySQL Server and wait for the dots to turn green.
You will be prompted for your Mac password to confirm this action.

A.3.3 Load Release Package into MySQL (MacOS)

Open the Terminal Application

Change Directories to the SnomedRfsMySql Folder
You must change directories to the SnomedRfsMySql folder before starting the loader script.

cd "$HOME/SnomedRfsMySql"

Start the SNOMED CT Loaded Script for MySQL
As shown above you must be in the SnomedRfsMySql folder to run the loader script. Additionally as shown below
you must include the name of the subfolder (bash) when running the loader script. The script may not run correctly
if called from a different current folder or without the including the subfolder name.

•
•
•

Disk Space

Before running the SNOMED CT load script, ensure you have at least 10Gb of free disk space. Once the load
is completed 4Gb can be released by deleting the Release package folder and zip file.
The following figures apply to the SNOMED CT International Release package 2019-07-31.

Release Package zip file: 0.5 Gb
Release Package folder: 3.5 Gb
Installed database up to: 5.5 Gb

\

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 72

•

•

•

•
•

•

•

•
•

•

•

•

bash/snomed_load_mysql

Respond to Prompts from the Script
You will be prompted to enter the following data when the script is run.

Prompt Response options Notes

Loader

script

identifying

tag

Leave blank to accept the default Recommended option
Uses the default create_latest script in the SnomedRfsMySql package.

Enter the name of one of the available scripts
(these are listed above the prompt)

Uses the specified script to control the process of loading the SNOMED CT data
into the database.
Scripts keys have two parts a prefix and suffix separated by an underscore. The
prefix indicates the kind of action:

create : Create a new database and load the data from the
specified version.
update : Update the views and procedures in the database
without recreating the database or reloading the the tables.
extend : Extend the database by loading data from another
package to the existing database.

The suffix indicates the edition and version to which this applies:

latest : The most recent International Edition package
yyyymmdd: The International Edition for the stated year
month and day
packageyyyymmdd: The identified Edition or Package for
the stated year month and day.

Release

package

path

You must enter the full path of the release
package folder or release package zip archive.

The path specified must point to a release package zip archive or an unzipped
release package folder.

There is no need to include the .zip extension when
referring to a release package archive or folder.

The script first looks for an unzipped release
folder with the relevant name.
If the folder is not found the script looks for a zip
archive with the same name plus the .zip
extension.
If the zip file is found it is unzipped and the
resulting folder is used.

Database

name

Leave blank to accept the default Default option

Uses the database name snomedct.
If the snomedct database already exists, it will be dropped
(deleted) and recreated.

Specify a name (must begin with the letter s

followed by lowercase letters and/or digits)
Uses the database name provided.

Using different names allows several SNOMED CT databases
to co-exist (e.g. for different Editions)
Each SNOMED CT database will use about 5Gb of disk
space ... so using different names may fill your available disk
space!
If the named database already exists, it will be dropped
(deleted) and recreated.

You will not be prompted for this if
you select an update script option.

|

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 73

•

•
•

•

•

•

MySQL

username

Leave blank to accept the default The default is root.

Enter your MySQL username The username chosen must be an account with administrator access rights
enabling database creation.

Wait for the Database Password Prompt
Before the creating the database the script generates an additional release file containing the transitive closure
(this is used to optimize testing and listing of subtypes). This may take between 2 and 5 minutes to complete.

If you rerun the loader script again on the same release, the script will reuse the existing transitive closure. If
you accept the options, there will be no delay while the rebuild occurs.

Respond to the Database Password Prompt
When the script starts to access MySQL you will then be prompted for your database password.

Note that the required password here is the password associated with your MySQL account.
As noted earlier the account used for the SNOMED CT load process must have appropriate access
permissions and its username should match your Mac login name.

Wait for the Load Process to Complete
Depending on system performance the process may take between 20 and 45 minutes to complete. It may
take longer with National Editions that contain additional content.

As the MySQL script runs it will report progress on the screen. Some steps take much longer than
others. For example, loading data into the database tables and adding or building indexes take much
longer than any of the other steps. So if the message about these steps are showing for a long time
don't worry. Let the process continue.

When the script completes, scroll back up the command window to check for any ERROR reports for
MySQL ... there should not be any!
Now it is time to open MySQL Workbench to view your SNOMED CT database.

A.4 Instructions for Windows Users

The instructions in this section are specific to users of Windows systems.

Users of Mac OS systems should refer A.3 Instructions for Mac OS Users.

Users of other Unix based system such as Linux or Ubuntu may also fine A.3 Instructions for Mac OS
Users usedful. However, the location of MySQL configuration files may differ and as a result some aspects
of the configuration process may need to be altered.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 74

•

•

A.4.1 MySQL Installation (Windows)

Install the MySQL Windows MSI installer
This is available as a free download from: https://dev.mysql.com/downloads/installer/

You can use either of the installers listed here:

The first installer option downloads a small package and then gets the other packages during the
installation process.
The second installer downloads all the packages and can then continue the installation without an internet
connection.

Info

The instruction in this section assume you are installing MySQL for the first time or have fully uninstalled
an earlier installation.
If MySQL is already installed you may choose to skip this section.

|

Note

if MySQL was installed using a different installation package, some of the configuration steps
described in later sections may need to be modified.
Please refer to https://www.mysql.com/products/community/ for detailed information about
MySQL.

ÿ

Note

Although the installers are 32-bit software, they will install the 64-bit version of MySQL if you are using a
64-bit system.

ÿ

https://dev.mysql.com/downloads/installer/
https://www.mysql.com/products/community/

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 75

•

•
•
•
•

Download and Run your Chosen MySQL Installer
During the installation process you will be prompted to choose the setup type. The minimum recommended
installation for the SNOMED CT database only required MySQL Server and MySQL Workbench so (unless you have
additional requirements) select the Custom option as shown below.

Continue the process by clicking the next button.

You will then be prompted to specify the products and features to be installed.

Select MySQL Server for Installation
Expand the nested list under MySQL Servers
Select the MySQL Server 8.0.17 (or a higher version if one is shown)
Click the arrow pointing to the right
This will add the MySQL Server to the list of Products/Features To Be Installed.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 76

•
•
•
•

Select MySQL Workbench for Installation
Expand the nested list under Applications / MySQL Workbench
Select the MySQL Workbench 8.0.17 (or a higher version if one is shown)
Click the green arrow pointing to the right
This will add the MySQL Workbench to the list of "Products/Features To Be Installed".

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 77

•

•

When both Server and Workbench are in the right-hand list, click the Next button.

Checking Requirements
At this point you may see a message indicating a requirement for a Visual C++ Redistributable package as shown
below.

If you see this message you should download and install the required package from https://www.microsoft.com/en-
us/download/details.aspx?id=48145 before proceeding.

Further notes on this process are provided on Meeting Requirements for MySQL Installation (Windows).

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 78

•

•

•

Continue with the Installation Process
Select the Standalone MySQL Server option.

Select the Development Computer option

Select the Legacy Authentication Method unless you will be using the database for other purposes that
require greater security.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 79

•

•

Accept or apply the following Server Connection settings

When promted, set a root password for access to the database.

•

Note

The Configuration File setting must refer to: C:\ProgramData\MySQL\MySQL Server 8.0\my.ini

This is a file that will be modified in the to configure the server so that it will correctly load the
SNOMED CT release files.

ÿ

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 80

•

•

•
•
•

•

•

Meeting Requirements for MySQL Installation (Windows)

Installing or Updating Microsoft Visual C++
During the installation of MySQL 8.0.x on Windows you may see a message indicating that you need to install or
update to the Microsoft Visual C++ 2015 Redistributable package.

If required this can be obtained as a free download from https://www.microsoft.com/en-us/download/
details.aspx?id=48145.

Click the Download button.

Choose the x64 version if you have a 64-bit computer or the x86 if you have an older 32-bit computer.
Continue an install the package.
The return to the MySQL installation process.

A.4.2 Set Required MySQL Configuration (Windows)

Open the Command Prompt in Administrator Mode
In the main Window menu locate the Command Prompt Desktop app.

Right-click on this item to show the drop down menu

Warning

Be sure to remember your root password this as you will need it for access to the database.
\

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 81

•

•

•

•

•

•
•

•

•

Select the Run as administrator option.
This is necessary as some steps below require administrator status.

Run the Following Commands from the Command Prompt
Type the following command to change directories to the SnomedRfsMySql.

Adjust the path as necessary if you have not installed the SnomedRfsMySql folder in the root folder on drive
C.

cd C:\SnomedRfsMySql

Type the following command to stop the MySQL server (if it is running).

sc stop MySQL80

Type the following command to run the configuration process. This command runs a script that updates the
MySQL server configuration.

win\snomed_wconfig_mysql

Type the following command to restart the MySQL server

sc start MySQL80

A.4.3 Install a Perl Processor

Download Strawberry Perl
Go to http://strawberryperl.com
Download either the appropriate version for your system (i.e. either 32-bit or 64-bit)

Install Strawberry Perl
Open and run the downloaded file

This will have a name like "strawberry-perl-5.30.0.1-64bit.msi" (version numbers may differ).
Go through the installation process

Before importing the SNOMED CT data the import process creates a "transitive closure file". This allows
this file to imported to create a transitive closure table that supports rapid subtype testing. The process
that creates the transitive closure file from other release files uses the Perl language. Windows does not
include a Perl language interpreter. Strawberry Perl is a widely used free Perl environment for Window and
this should be installed on your computer before running the import script.

|

http://strawberryperl.com

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 82

•

•

Read and accept the license.
We recommend that you install in the default installation path (e.g. "C:\Strawberry)

You can choose a different path if preferred as the installation script will attempt to locate the
file wherever it is installed on the main drive.

If you need to install Perl on another disk or network drive (click here) ...

If Perl is installed on a network or a secondary drive (i.e. not drive C), you need to specify that
location. To do this create (or edit) a plain text file called perlPath.cfg file in the
SnomedRfsMySql\win folder. This file must contain a single line of text specifying the full
path of the perl.exe file (for example the file might contain the text "D:
\AddedSoftware\Strawberry\perl\bin\perl.exe")

If the import script cannot find perl.exe at the location specified in the perlPath.cfg file, that
configuration file will be deleted and will need to be recreated with the correct full path to
perl.exe.

Check the Installation
When the installation is complete, you can test the installation by running the following command in a
newly opened Command Prompt.

perl C:\SnomedRfsMySql\lib\test.pl

If Strawberry Perl is correctly installed the result should the following message.

Perl is correctly installed

A.4.4 Load Release Package into MySQL (Windows)

Warnings

Do not install Strawberry Perl within the SnomedRfsMySql folder as the installation
will be removed by future updates to the SnomedRfsMySql package.
Ideally you should install Strawberry Perl on drive C.

\

1.

2.

3.

Tip

If the message above does not appear, check the following:
The command line above assumes that SnomedRfsMySql is installed in the C:\ root folder. If this is
not the case, repeat the test with the correct path to SnomedRdsMySql.
Ensure that you have closed all open command line windows. Then open a new command line
window and run the test command again.
If neither of the above steps corrects corrects the issue, it suggest a problem with the installation.
Consider uninstalling and reinstalling Strawberry Perl to correct the issue.

•
•
•

Disk Space

Before running the SNOMED CT load script, ensure you have at least 10Gb of free disk space. Once the load
is completed 4Gb can be released by deleting the Release package folder and zip file.
The following figures apply to the SNOMED CT International Release package 2019-07-31.

Release Package zip file: 0.5 Gb
Release Package folder: 3.5 Gb
Installed database up to: 5.5 Gb

\

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 83

•

•

•

•

Open the Command Prompt in Administrator Mode
In the main Window menu locate the Command Prompt Desktop app.

Right-click on this item to show the drop down menu

Select the Run as administrator option.
This is necessary as some steps below require adminstrator status.

Change Directories to the SnomedRfsMySql Folder
You must change directories to the SnomedRfsMySql folder before starting the loader script.

cd "C:\SnomedRfsMySql"

Start the SNOMED CT Loader Script for MySQL
As shown above you must be in the SnomedRfsMySql folder to run the loader script. Additionally as shown below
you must include the name of the subfolder (win) when running the loader script. The script may not run correctly if
called from a different current folder or without the including the subfolder name.

win\snomed_wload_mysql

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 84

•

•

•

•
•

•

•

•
•

•

•

•

Respond to Prompts from the Script
You will be prompted to enter the following data when the script is run.

Prompt Response options Notes

Loader script

identifying tag

Leave blank to accept the default Recommended option
Uses the default create_latest script in the SnomedRfsMySql package.

Enter the name of one of the available
scripts (these are listed above the
prompt)

Uses the specified script to control the process of loading the SNOMED CT data
into the database.
Scripts keys have two parts a prefix and suffix separated by an underscore. The
prefix indicates the kind of action:

create : Create a new database and load the data from the
specified version.
update : Update the views and procedures in the database
without recreating the database or reloading the the tables.
extend : Extend the database by loading data from another
package to the existing database.

The suffix indicates the edition and version to which this applies:

latest : The most recent International Edition package
yyyymmdd: The International Edition for the stated year
month and day
packageyyyymmdd: The identified Edition or Package for
the stated year month and day.

Release

package path

You must enter the full path of the
release package folder or release
package zip archive.

The path specified must point to a release package zip archive or an unzipped
release package folder.

There is no need to include the .zip extension when referring
to a release package archive or folder.

The script first looks for an unzipped release
folder with the relevant name.
If the folder is not found the script looks for a zip
archive with the same name plus the .zip
extension.
If the zip file is found it is unzipped and the
resulting folder is used.

Database name Leave blank to accept the default Default option

Uses the database name snomedct.
If the snomedct database already exists, it will be dropped
(deleted) and recreated.

Specify a name (must begin with the
letter s followed by lowercase letters
and/or digits)

Uses the database name provided.

Using different names allows several SNOMED CT databases
to co-exist (e.g. for different Editions)
Each SNOMED CT database will use about 5Gb of disk
space ... so using different names may fill your available disk
space!
If the named database already exists, it will be dropped
(deleted) and recreated.

MySQL

username

Leave blank to accept the default The default is root.

Enter your MySQL username The username chosen must be an account with administrator access rights
enabling database creation.

You will not be prompted for
this if you select an update
script option.

|

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 85

•

•
•

•

•

•

•

Wait for the Database Password Prompt
Before the creating the database the script generates an additional release file containing the transitive closure
(this is used to optimize testing and listing of subtypes). This may take between 2 and 5 minutes to complete.

If you rerun the loader script again on the same release, you will be offered the option to reuse the existing
transitive closure. If you accept the options, there will be no delay while the rebuild occurs.

Respond to the Database Password Prompt
When the script starts to access MySQL you will then be prompted for your database password.

Note that the required password here is the password associated with your MySQL account.
As noted earlier the account used for the SNOMED CT load process must have appropriate access
permissions and its username should match your Mac login name.

Wait for the Load Process to Complete
Depending on system performance the process may take between 20 and 90 minutes to complete. It may
take longer with National Editions that contain additional content.

As the MySQL script runs it will report progress on the screen. Some steps take much longer than
others. For example, loading data into the database tables and adding or building indexes take much
longer than any of the other steps. So if the message about these steps are showing for a long time
don't worry. Let the process continue.

When the script completes, scroll back up the command window to check for any ERROR reports for
MySQL ... there should not be any!
Now it is time to open MySQL Workbench to view your SNOMED CT database.

A.4.5 Troubleshooting (Windows)

MySQL Workbench Unable to Start or Stop MySQL Server (Windows)
This issue usually results from an incorrect service name reference. This arises when the MySQL Workbench
contains a reference to an older service name (e.g. mysql), whereas MySQL Server 8.0.x uses the service name
MySQL80.

Check the Name of the Required Service
Open the Services Desktop app from the Windows menu.

This section contains notes on some known issues with configuration of MySQL for use with Windows and
the actions required to resolve them.

|

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 86

•

•
•

Then search the list of services to identify the name of the MySQL service.

Correct the Reference in MySQL Workbench
Open MySQL Workbench.
In the Server menu select Management Access Settings.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 87

•

•

•
•

In the Manage Server Connections dialog update the Window Service Name to match the service name
identified earlier.

A.5 Using MySQL Workbench to Query SNOMED CT

Creating and Configuring a SNOMED CT Connection

Open MySQL Workbench Application

The following dialog should be displayed.

Create a SNOMEDCT Connection
Click the spanner symbol to the right of the MySQL Connections prompt.

When the dialog below opens:

Select the default MySQL connection
Then click the Duplicate button

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 88

•
•

•
•

With the newly created connection selected:

Change the Connection Name to SNOMEDCT

Enter a Default Schema name as snomedct (i.e. the name of the newly created database)

Click the button.
If the connection is successful you will see the following dialog.

In future when you open MySQL Workbench you will see the option to open the SNOMEDCT connection.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 89

•
•

•
•

•
•
•

Save Your MySQL Password in Keychain
To avoid future prompts for the MySQL Password you can save the password in the Keychain.

Click the button.
Enter the MySQL password to be stored.

Testing and Using the SNOMED CT Database

Open the SNOMEDCT Connection
Open MySQL Workbench
Select the SNOMED CT Connection

Test the SNOMED CT Database
To test the loaded SNOMED CT database open one of the example queries in the SnomedCtRfsMySql/

mysql_examples folder.

Click open SQL button in the toolbar in the toolbar
Find the mysql_examples folder in the SnomedCtRfsMySql subfolder of your home directory.
Select and open one of the queries

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 90

•

•
•
•
•

The query should be display as shown below

Click the lightning icon to run the query

The results of running the query should be displayed as below

Using the SNOMED CT Database
The SNOMED CT database can be used in different ways:

Running example SQL queries in the SnomedRfsMySql package.
Running queries provided as part of a SNOMED CT E-Learning assignment.
Using example SQL queries as templates for your own queries.
Running SQL queries you have written yourself from scratch.

You can run your SQL queries in MySQL Workbench as described in the previous section. Additionally these queries
can be run using the MySQL command line interface or through a MySQL connector for one of the programming
languages listed at: https://dev.mysql.com/downloads/.

•

If you are using example queries as templates for your own queries alway copy the query first so that you
do not overwrite the original example query.

If you accidentally overwrite an example query, you can download the SnomedRfsMySql.zip file
again and extract the example queries folder.

\

https://dev.mysql.com/downloads/

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 91

•

•

Managing MySQL Accounts
The "root" user account is typically used for importing the SNOMED CT release files. However, you should create
additional MySQL accounts for database users that do not have administrator rights. Ideally the name of these
MySQL accounts should match the Mac username of the user as this simplifies call the mysql command line tool
and the use of MySQL connectors.

To create user accounts in the MySQL Workbench select the Administration tab (see below) and select Users and

Privileges (see below).

Set up the account details and access permissions.
In this example an account with the username newuser account is being created as shown below:

In the schema privileges the newuser is given access to the snomedct database schema:

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 92

•

•

•

Within the snomedct database the rights of this newuser are limited to the following actions.

A.6 Overview of the SNOMED CT MySQL Database

Open the MySQL Workbench Schema Tab
Open MySQL Workbench and then select the Schema Tab.

You should see something like the image below.

If you gave your database a name other than snomedct you will see the name you chose listed as a schema.

Make SNOMED CT the Default Database Schema
If the name of you SNOMED CT database schema is displayed in bold this means it is the default database.

If your SNOMED CT database schema name is not shown in bold, double-click on the schema name. It will
become the default and will be displayed in bold.

Tables in the Database
Expand the Tables Item under the SNOMED CT Database Schema name. This will reveal a list of table names.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 93

•

1.

2.

3.

All the listed table names have an initial prefix followed by an underscore character. The meaning of the prefixes
used and the names and content of specific tables with these prefixes are summarized in the table below.

Prefix Tables Using this Prefix Table Names Table Content

full One table with the full prefix is created
for each component.

These tables are named
full_[component-type] (e.g. full_concept,
full_description, full_relationship)

Each of these tables is populated with all
the rows from the file (or files)
representing this type component in the
Full release subfolders.

One table with the full prefix is also
created for each reference set type
present in the release.

The tables are named
full_refset_[refset-type] (e.g.
full_refset_Simple,
full_refset_Language,
full_refset_Association).

Each of these tables is populated with all
the rows from the file (or files)
representing reference sets of this type
in the Full release subfolders.

snap One table with the snap prefix is created
for each component.

These tables are named
snap_[component-type] (e.g.
snap_concept, snap_description,
snap_relationship)

Each of these tables is populated with all
the rows from the file (or files)
representing this type component in the
Snapshot release subfolders.

One table with the snap prefix is also
created for each reference set type
present in the release.

The tables are named
snap_refset_[refset-type] (e.g.
snap_refset_Simple,
snap_refset_Language,
snap_refset_Association).

Each of these tables is populated with all
the rows from the file (or files)
representing reference sets of this type
in the Snapshot release subfolders.

Additional tables with snap prefix are
created to represent the transitive
closure and proximal primitive
supertype relationships

The table are named snap_transclose

and snap_proximal_primitives.
The snap_transclose table is populated
with all the rows from the transitive
closure files generated during the
SnomedRfsMySql import process. The
snap_proximal_primitives table is
populated with proximal primitive
relationships derived by processing the

snap_transclose table.

config Lookup and configuration files used by
views and stored procedures.

See sections below in Views
and Procedures for further
information.

config_language A table linking ISO language codes (e.g.
en-US, en-GB, es) to the identifier of the
relevant language reference set.

config_settings A table storing configuration settings
that determine:

The language reference set
used to select synonyms and
fully specified names
The effectiveTime of two
configurable retrospective
snapshot views (snap1 and
snap2)
The effectiveTime range for
two configurable delta views
(delta1 and delta2)

config_shortcuts A table linking a short text keys to
commonly used concept ids. This is used
to facilitate constraining searches to
concepts within these hierarchies
without requiring the query to specify
the full SNOMED CT identifier for the
concept.

This is currently only used by the
procedures snap_search_plus,
snap_search1_plus and
snap2_search_plus. In future it may also
be used to support procedures with a
common requirement for

https://confluence.ihtsdotools.org/display/DOCGLOSS/proximal+primitive+supertype
https://confluence.ihtsdotools.org/display/DOCGLOSS/proximal+primitive+supertype

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 94

•
•

•

•

•

•

•

•

•
•

Views
SQL database views are in effect virtual tables. They can be queried in the same way as a table but they do not store
data. The data that appears to be stored in a view is in fact defined by a stored query applied to the data stored in
one or more tables.

The SNOMED CT import process creates two distinct types of views. Filtered views of a single table and composite
views that bring together related data from different tables.

Filtered Table Views
The import process creates six distinct sets of table views. Five of these are applied to every Full release table. The
naming conventions and characteristics of each of these filtered views summarized in the table below.

Pre

fix

View Names View Content

sn

ap

1

snap1_[component-type] (e.g.
snap1_concept,
snap1_description)
snap1_refset_[refset-type] (e.g.
snap1_refset_Simple)

These table views enable access to retrospective snapshots of the Full release data. The most recent
version of every component in the table with an effectiveTime less than or equal to the snapshot
date

When the database is imported the snapshot dates are set as follows:

snap1 views are set as a snapshot date 6 months before the current release
snap2 views are set as a snapshot date 12 months before the current release

These snapshot times can be changed by calling the stored procedure
setSnapshotTime(viewNumber, dateTime).

For example, to set the snap1 date to 31 January 2017

CALL setSnapshotTime(1,"20170131");
and to set the snap2 date to 1 May 2016

CALL setSnapshotTime(2, "20160501");

sn

ap

2

snap2_[component-type] (e.g.
snap2_concept,
snap2_description)
snap2_refset_[refset-type] (e.g.
snap2_refset_Simple)

del

ta

delta_[component-type] (e.g.
delta_concept, delta_description)
delta_refset_[refset-type] (e.g.
delta_refset_Simple)

The delta table views enable access to delta views between any two dates. Only rows in the table
with an effectiveTime greater than the start time and less that end time will be included in these
views.
When the database is imported the delta date ranges are set as follows:

delta views are set with a start date 6 months before the current release and
an end date matching the current release date (this matches the current
Delta release file content).
delta1 views start 12 months before the current release with an end date 6
months before the current release date.
delta2 views start 18 months before the current release with an end date 12
months before the current release date.

Delta date ranges can be changed by calling the stored procedure setDeltaRange(viewNumber,
startDateTime, endDateTime).

For example, to set the delta view range to start on 31 July 2018 and end a year later

CALL setDeltaRange(0,"20180731","20190731");
The delta1 and delta2 ranges can also be set in the same way

CALL setDeltaRange(1,"20170731","20190731");
CALL setDeltaRange(2,"20020131","20070731");

del

ta1

delta1_[component-type] (e.g.
delta1_concept,
delta1_description)
delta1_refset_[refset-type] (e.g.
delta1_refset_Simple)

del

ta2

delta2_[component-type] (e.g.
delta2_concept,
delta2_description)
delta2_refset_[refset-type] (e.g.
delta2_refset_Simple)

An additional table view (with the prefix snapasview) provides a current snapshot view derived from the Full
release. This is redundant in this database, because the import process imports the Snapshot release files as well as
the Full release files. However, a few snapasview examples are included to provide examples of a views that could
be used to avoid the need to import the Snapshot tables.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 95

Composite Views
The table below summarizes the composite views supported by the database. Many of these composite views
have variants that access specific snapshot views. These variants are indicated by the view prefixes snap, snap1

and snap2. Note that the snap variants use the snap tables, while snap1 and snap2 variants use the relevant
snapshot table views. Composite views that require access to the transitive closure table can only access the
current snapshot (i.e. the snap tables). A few specific composite views are also relevant to the delta views and these
have delta, delta1 and delta2 variants.

Composite View Purpose Snap Table and Views Delta Views

fsn Display of fully specified name for a specified conceptid. All snapshot views -

pref Display of preferred synonym for a specified conceptid. All snapshot views -

syn Display of acceptable synonyms for a specified conceptid. All snapshot views -

synall Display of all valid synonyms (preferred and acceptable) for a
specified conceptid.

All snapshot views -

syn_search_active All valid synonyms of active concepts. This is used as the
substrate for searches.

All snapshot views -

term_search_active Fully specified name and all valid synonyms of active concepts.
This can be used as an extended substrate for searches
including fully specified names.

All snapshot views -

rel_fsn All relationships with fully specified names returned for
sourceid (src_id, src_term), typeid (type_id, type_term) and
destinationid (dest_id, dest_term) and relationshipGroup.

All snapshot views -

rel_pref All relationships with preferred synonyms returned for
sourceid (src_id, src_term) typeid (type_id, type_term) and
destinationid (dest_id, dest_term) and relationshipGroup.

All snapshot views -

rel_def_fsn All defining attribute relationships with fully specified names
returned for sourceid (src_id, src_term), typeid (type_id,
type_term) and destinationid (dest_id, dest_term) and
relationshipGroup.

All snapshot views -

rel_def_pref All defining attribute relationships with preferred synonyms
returned for sourceid (src_id, src_term) typeid (type_id,
type_term) and destinationid (dest_id, dest_term) and
relationshipGroup.

All snapshot views -

rel_child_fsn All direct subtypes of a concept (conceptId) returned using the
id and fully specified name (id, term) of the child concept.

All snapshot views -

rel_child_pref All direct subtypes of a concept (conceptId) returned using the
id and preferred synonym (id, term) of the child concept.

All snapshot views -

rel_parent_fsn All direct supertypes of a concept (conceptId) returned using
the id and fully specified name (id, term) of the parent concept.

All snapshot views -

rel_parent_pref All direct supertypes of a concept (conceptId) returned using
the id and preferred synonym (id, term) of the parent concept.

All snapshot views -

transclose_pref Transitive closure table view returned with subtype and
supertype returned with id and preferred term.

Only snap table -

proxprim_pref Proximal primitive relationships closure table view returned
with subtype and supertype returned with id and preferred
term.

Only snap table -

inactive_concepts Returns all inactive concepts in a specified snapshot or delta
view. The returned data includes the fully specified name of
the concept, the reason for inactivation (from the concept
inactivation reference set) and the associations with active
concepts shown in the historical association reference sets.

All snapshot views All delta views

inactive_descriptions Returns all inactive descriptions in a specified snapshot or
delta view. The returned data includes the fully specified name
and active status of the described concept, and the reason for
inactivation (from the description inactivation reference set),

All snapshot views All delta views

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 96

•
•

•

•

•

Stored Procedures

Procedure Description View Prefix

Support

snap_SearchPlus(

searchWords,filter)

Searches for acceptable synonyms of active concepts using a MySQL fulltext boolean search
for the specified word or words. Word prefixed by "+" must be present, words prefixed by "-"
but be absent and words with neither prefix will also be searched for but their absence from a
term will not prevent a match.

The filter can be used as follows to filter the search:

Left blank: no filtering
< conceptId : only terms of concepts that are subtypes of the concept
identified by conceptid will be included in the search results.
< shortcutTerm : only terms of concepts that are subtypes of the
concept identified by looking up the shortcutTerm in the
config_shortcuts table will be included in the search results
regular-expression : only terms that match the regular expression will
be included in the search results
!regular-expression : only terms that do NOT match the regular
expression will be included in the search results

Examples:

CALL snap_SearchPlus('fundus stomach', '');
CALL snap_SearchPlus('+fundus +stomach','');
CALL snap_SearchPlus('+lung +disease -chronic','');

CALL snap_SearchPlus('appendix','<proc');
CALL snap_SearchPlus('hemoglobin','<lab');
CALL snap_SearchPlus('infection','<19829001');

CALL snap_SearchPlus('+fundus', 'ch');
CALL snap_SearchPlus('fundus','!(eye|oculi|uter)');
CALL snap_SearchPlus('+lung +disease +chronic','oe?dema');

All snapshot
views.

snap_ShowLanguages(

conceptId, languageCodeA,

languageCodeB)

Shows the terms associated with a specified conceptId in two languages specified by the
language codes.

Example:

CALL `snap_ShowLanguages`(80146002, 'en-GB','en-US');

All snapshot
views.

eclSimple(expression-

constraint)
Allows a fairly simple ECL expression to be processed. Maximum of one focus concept
constraint optionally refined by up to two attribute value constraints.

Example:

CALL `eclSimple`('<404684003:363698007=<<39057004,116676008=<<415582006');

Only current
snapshot

setLanguage(viewNumber,

languageCode)
Sets the language reference set that determines the terms to be displayed by composite views
with names ending _fsn, _pref, _syn, _synall, term. The language and dialect code is used to
specify the language (e.g. en-US, en-GB).

If other values are supported by the SNOMED Edition, these will need to be added to the
config_languages to provide the refsetId lookup from the language code.

Example:

CALL `setLanguage`(0, "en-GB")

-

setDeltaRange(

viewNumber, startDateTime,

endDateTime)

Sets the date range for a specified delta view (viewNumber 0=delta, 1=delta1, 2=delta2)

Examples:

CALL setDeltaRange(0,"20180731","20190731");

CALL setDeltaRange(2,"20020131","20070731");

-

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 97

•

•

setSnapshotTime(

viewNumber, dateTime)
Sets the date on which a specified snapshot view is based (viewNumber 1=snap1, 2=snap2)

Example:

CALL setSnapshotTime(1,"20170131");

CALL setSnapshotTime(2,"20120131");

-

resetConfig() Resets the configuration file to the default initial starting snapshot time and delta range. -

showConfig() Displays the configuration table settings for language, snapshot dates and delta ranges. -

A.7 MySQL Reference Data

A.7.1 Required MySQL Configuration Settings
This page describes and explains the required additional MySQL configuration settings for the SNOMED CT example
database. For instructions on how to apply these settings see A.3.2 Set Required MySQL Configuration (MacOS) or A.
4.2 Set Required MySQL Configuration (Windows).

The following MySQL settings are required for loading and using the SNOMED CT MySQL database.

Setting Explanation Applies to

local-infile=1 Required to ensure that data can be loaded into the database from local files (e.g. SNOMED CT
Release Files)

mysqld, mysql,
client

ft_stopword_file = '' The two settings improve the full text search capabilities of the database.

The first one removes the stop word list (which contains many words that
are significant in clinical terms). An alternative approach would be a
smaller stop word list but tests with SNOMED CT seem to suggest that this
would not result in a significant improvement in performance.
The second setting allows words that are 2 letters long to be indexed (the
default setting is 4 which means terms like leg, arm, eye, ear ... are not
found in searches). Reducing this to 3 resolves this issue but still means
that common clinical abbreviations like MI, FH, RA as not indexed.

mysqld

ft_min_word_len = 2

disable-log-bin These two settings stop the MySQL server from creating binary log files. Creation of these log files
during the import process not only results in substantially slowing of the process but can also
generates huge log files that more than double the space required for installation.

mysqld

skip-log-bin

The additional configuration settings required are specified in the following way in a file provided in the SnomedRf

sMySql/cnf folder.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 98

Content of additional configuration file: my_snomedserver.cnf

[mysqld]
local-infile=1
ft_stopword_file = ''
ft_min_word_len = 2
disable-log-bin
skip-log-bin
default-authentication-plugin=mysql_native_password
[mysql]
local-infile=1
[client]
local-infile=1
protocol=tcp
host=localhost
port=3306

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 99

•

•

•

•

•

•

Appendix B: Obtaining SNOMED CT Release Files
To download SNOMED CT release files you must have a SNOMED CT Affiliate License. The table below provides step-
by-step advice on how to obtain a license and register your license to enable you to download SNOMED CT release
files.

Step 1 Do you already have a SNOMED CT

Affiliate License?

If you already have a
license please skip to Step
6.
If you do not have a
license the steps below
will help you to obtain a
license.

Step 2 Are in a SNOMED International

Member territory?

If you are not in a Member
territory skip to Step 6.

Step 3 Does your Member use the Member

Licensing and Distribution Service

(MLDS)?

If your Member uses MLDS
skip to Step 5.

Step 4 Register with the licensing service

provided by your Member.

Finally please check Step 6
below.

To find out more about licensing and downloading in these please follow the contact
links on the Member

Step 5 Register with MDLS.

Step 6 Do you intend to use SNOMED CT in

a non-Member Territory?

If so you will also need to
register this use on MDLS.

If you are in a SNOMED International Member territory there will be no
charge for licensing provided that you are not using SNOMED CT outside
Member territories. However, you still need to register for a license.
To learn more about SNOMED CT licensing please go to http://
snomed.org/license .

To check if you are based in a Member territory see the Members page on
the SNOMED International website. On that page you will see a table listing
all the Member territories and providing contacts details for each Member.

•

•

Some SNOMED International Members use the SNOMED International
MLDS service while others host their own licensing and download services.
To find out if your Member uses MDLS service either:

Look at the releases available for licensing and
download from MLDS; or
Follow the contact links for your Member on the
SNOMED International Members webpage.

•

•

Follow the contact links for your Member on the Members webpage. These
links should take you to information about the licensing and distribution
service used by the Member.

If you are unable to find this information please use the
email contact address for the Member as listed on the
Members page. 1

In the unlikely event that you are still unable to find the
necessary information please email info@snomed.org.

Register on the SNOMED International Member Licensing and Distribution
Service

Note

If you are intending to use SNOMED CT in a non-Member territory you must
register this use on MDLS. This is true even for licensees who have
registered their license using a service provided by a SNOMED
International Member.

ÿ

Register on the SNOMED International Member Licensing and Distribution
Service

http://snomed.org/licensing
http://snomed.org/license
http://snomed.org/license
http://snomed.org/members
http://snomed.org/members
http://mlds/
http://mlds_releases/
http://mlds_releases/
http://snomed.org/members
http://snomed.org/members
http://snomed.org/members
mailto:info@snomed.org
http://snomed.org/mlds
http://snomed.org/mlds
http://snomed.org/mlds
http://snomed.org/mlds

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 100

•

•

•

•

•

•

•

•

•
•

•

•
•

•

Appendix C: Release Types and Versioned Views

Release Types
SNOMED CT release packages include the following three distinct representations of the terminology content.

A full release, which is a release type in which the release files contain every version of every component and
reference set member ever released.
A snapshot release, which is a release type in which the release files contain only the most recent version of
every component and reference set member released, as at the release date.
A delta release, which is a release type in which the release files contain only rows that represent component
versions and reference set member versions created since the previous release date.

See also C.2. Release Type Support for Versioned Views.

Versioned Views
A versioned view is formally defined as:

A set of component versions and reference set
member versions defined by characteristics of
their effectiveTimes.

From a practical perspective, a versioned view is the result of
filtering the full release files based on criteria that return a
consistent representation of the content of these files as it was (or
would have been) at a particular point in time.

Notes
Versioned views and release types are closely related.
A release type is a physical representation of a
particular versioned view.
Some versioned views are not instantiated as release

types but all valid versioned views of a SNOMED CT
edition can be generated from a full release of
that edition.

The three main versioned views are:

The full view, which is a view of SNOMED CT that
includes all versions of all
components and reference set members in a full
release.

A snapshot view which is a view of SNOMED CT
that includes the most recent version of all comp
onents and reference set members at a specified
point in time.

There are two distinct types of snapshot view:

A current snapshot view, which is a snapshot view for
the date of the most recent release.
A retrospective snapshot view, which is a snapshot
view for a specified snapshot date.

A delta view, which is a view of SNOMED CT that
contains only rows that represent changes to co
mponents and reference set members since a
specified date or between two specified dates in
the past.

There are two distinct types of delta view:

The current delta view, which is a delta view for the
date range between the most recent release date and
the immediately preceding release date.
A retrospective delta view, which is a delta view for a
specified date range.

See also 4.6. Enabling Versioned Views

https://confluence.ihtsdotools.org/display/DOCGLOSS/SNOMED+CT+release+package
https://confluence.ihtsdotools.org/display/DOCGLOSS/full+release
https://confluence.ihtsdotools.org/display/DOCGLOSS/snapshot+release
https://confluence.ihtsdotools.org/display/DOCGLOSS/delta+release
https://confluence.ihtsdotools.org/display/DOCGLOSS/full+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/current+snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/retrospective+snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/delta+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/current+delta+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/retrospective+delta+view

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 101

•

•
•
•

•

•

•

•

•

C.1. Practical Uses for Versioned Views
The practical uses of these views are outlined in Table C.1-1.

Table C.1-1: Practical Uses for Different Versioned Views

View Uses

Full view This view contains all versions of all released components and reference set members. 1

It can support all the uses identified in the following rows of this table.

Current snapshot view This view contains only the most recent version of all released components and reference set members.

It should be used for data entry.
It can also be used to support for most types of retrieval and analysis.
Detailed analysis of past use of concept that have since been made inactive may benefit
from access to previous snapshots.
It can also be used to generate the current delta view and thus also enables the uses
identified for that view.

Retrospective
snapshot view

A retrospective snapshot view has the same features as a current snapshot view but excludes changes made after a
certain point in time.

During and immediately after upgrading to a new release version, the previous snapshot
view map be of particular value for determining details of changes.
Earlier snapshot views can also be valuable when comparing and evaluating results of
analyses which may have been affected by terminology changes.

Current delta view This view only includes the post change state of components that have changed since the previous release.

It can be used to identify components that have been added or inactivated since the
previous release and this information can be used to check whether updates are needed.
For example, updating, implementation resources such as local subsets, data entry
picklists and queries. These updates may include removing inactive concepts or
descriptions as well as adding relevant newly added concepts and descriptions.

Note that some aspects of this review process also require access to the
previous current snapshot view.

Retrospective delta
view

A retrospective delta has the same features as a current delta view but relates to changes between two earlier dates.

It can be used in conjunction with snapshot views

C.2. Release Type Support for Versioned Views

A key factor when deciding which release type(s) to import is the extent to which each release by supports

required views of the terminology content. Table C.2-1 lists the views that may be required and indicates

which release types support each of these views.

Table C.2-1: Views Supported by Different Release Types

Supported Views

Release Types

Full Snapshot Delta

Full View A view of SNOMED CT that includes all
versions of all components and reference
set members in a full release.

Snapshot Views

https://confluence.ihtsdotools.org/display/DOCGLOSS/Full+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/Current+snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/Retrospective+snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/Retrospective+snapshot+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/Current+delta+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/Retrospective+delta+view
https://confluence.ihtsdotools.org/display/DOCGLOSS/Retrospective+delta+view

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 102

Current Snapshot A snapshot view for the date of the most
recent release.

Retrospective Snapshot A snapshot view for a specified snapshot
date.

Delta Views

Current Delta A delta view for the date range between
the most recent release date and the
immediately preceding release date.

Retrospective Delta A delta view for a specified date range.

C.3. Common Mistakes with Snapshot Generation
The most common type of error when generating a snapshot is to ignore rule 3 and/or 4. For example, it is
reasonable to want to filter a view so that only active components are included. However, if you apply that filter in a
way that restricts the substrate from which the snapshot is generated you will get incorrect results in which all
components appear to be active even after they have been inactivated. An example of this error is shown on

Table C.3-1: Full Release as at 2019-01-31

id effectiveTime active value

A 20170131 1 Red

B 20170131 1 Amber

C 20170131 1 Yellow

A 20180131 0 Red

B 20180131 1 Orange

D 20180131 1 Green

B 20190131 0 Orange

E 20190131 1 Blue

The following query when applied to the full release data shown in Table C.3-1 generates the erroneous snapshot
view shown in Table C.3-2. This query excludes inactive rows at the same time as identifying the most recent
effectiveTime. The result is that components A and B are shown as active because the later rows that inactivated
those components were excluded.

Select * from `component` `c` where
 `c`.`effectiveTime`=(Select max(effectiveTime) from `component` where `id`=`c`.`id`
and active=1)

Table C.3-2: Erroneous Snapshot view as at 2019-01-31

id effectiveTime active value

A 20170131 1 Red

C 20170131 1 Yellow

B 20180131 1 Orange

D 20180131 1 Green

E 20190131 1 Blue

The following query when applied to the full release data shown in Table C.3-1 generates the correct snapshot view
shown in Table C.3-3. The most recent versions of all the components A-E are included. In the case of components A
and B these are both inactive.

 SNOMED CT - SQL Practical Guide
 (2019-11-25)

Copyright© 2019 International Health Terminology Standards Development Organisation Page 103

Select * from `component` `c`
 where `c`.`effectiveTime`=(Select max(effectiveTime) from `component` where
`id`=`c`.`id`)

Table C.3-3: Erroneous Snapshot view as at 2019-01-31

id effectiveTime active value

C 20170131 1 Yellow

A 20180131 0 Red

D 20180131 1 Green

B 20190131 0 Orange

E 20190131 1 Blue

The following query when applied to the full release data shown in Table C.3-1 generates the correct snapshot view
shown in Table C.3-4 with inactive rows filtered out after generating the snapshot view. Only components C-E are
included as the most recent versions of components A and B are inactive.

Select * from `component` `c`
 where `c`.`active`=1
 and `c`.`effectiveTime`=(Select max(effectiveTime) from `component` where
`id`=`c`.`id`)

Table C.3-3: Correct Snapshot view as at 2019-01-31 with inactive rows excluded

id effectiveTime active value

C 20170131 1 Yellow

D 20180131 1 Green

E 20190131 1 Blue

	1. Introduction
	Summary
	Background
	Purpose

	2. Objectives, Audiences and Uses
	Objectives
	Audiences
	Ways of Using this Guide

	3. SNOMED CT Example Database
	Role of the Example Database
	Requirements for Creating the Database
	Creating the Example Database
	Functionality of the Example Database

	4. Database Design
	4.1. Essential Reference Information
	4.2. Release Type Options
	Using Full and Snapshot Releases
	Importing the Delta Release

	4.3. Data Type Options
	4.4. Database Table Naming
	Introduction
	Release File Naming
	File Name Element Relevance to Table Names
	Deriving Table Names from Release File Names

	4.5. Database Table Design
	Introduction
	Column Names
	Column Data Types
	Additional Column Options
	Primary Keys
	Additional Indexes

	4.6. Enabling Versioned Views
	4.6.1. Versioned View Queries
	4.6.2. Versioned Database Table Views
	4.6.3. Optimizing Versioned Table Views

	4.7. Enabling Subtype Testing
	Requirement
	Solution
	Creating a Transitive Closure File
	Using a Transitive Closure File
	Computing Proximal Primitive Supertypes

	4.8. Composite Views
	4.8.1. General Characteristics of Composite Views
	4.8.2. Composite Description Views
	4.8.3. Composite Subtype Hierarchy Views
	4.8.4. Composite Relationship Views
	4.8.5. Composite Historical Views

	4.9. Stored Procedures
	4.9.1. General Characteristics of Stored Procedures
	4.9.2. Configuration Procedures
	4.9.3. Language and Dialect Comparison Procedures
	4.9.4. Search Procedures
	4.9.5. Expression Constraint Procedures

	5. Creating and Populating a SNOMED CT Database
	5.1. Creating the Database
	5.2. Creating Tables for Components
	Introduction
	Creating a Concept Table
	Creating a Description Table
	Creating a Relationship Table

	5.3. Creating Tables for Reference Sets
	Introduction
	Creating a Simple Refset Table
	Creating a Language Refset Table
	Creating an Extended Map Refset Table
	Creating a Module Dependency Refset Table

	5.4. Importing Release Files
	Sample SQL Code for Importing from Full Release
	Sample SQL Code for Importing from a Snapshot Release

	Appendix A: Building the SNOMED CT Example Database
	A.1 Download the SNOMED CT Example Database Package
	Download and Unzip the SnomedRfsMySql Package
	Move the SnomedRfsMySql Folder to Your Home Folder

	A.2 Download the Release File Package
	A.3 Instructions for Mac OS Users
	The instructions in this section are specific to user of Mac OS systems.
	Users of Window systems should skip to A.4 Instructions for Windows Users.
	A.3.1 MySQL Installation (MacOS)
	A.3.2 Set Required MySQL Configuration (MacOS)
	A.3.3 Load Release Package into MySQL (MacOS)

	A.4 Instructions for Windows Users
	The instructions in this section are specific to users of Windows systems.
	Users of Mac OS systems should refer A.3 Instructions for Mac OS Users.
	A.4.1 MySQL Installation (Windows)
	A.4.2 Set Required MySQL Configuration (Windows)
	A.4.3 Install a Perl Processor
	A.4.4 Load Release Package into MySQL (Windows)
	A.4.5 Troubleshooting (Windows)

	A.5 Using MySQL Workbench to Query SNOMED CT
	Creating and Configuring a SNOMED CT Connection
	Testing and Using the SNOMED CT Database
	Managing MySQL Accounts

	A.6 Overview of the SNOMED CT MySQL Database
	Open the MySQL Workbench Schema Tab
	Tables in the Database

	A.7 MySQL Reference Data
	A.7.1 Required MySQL Configuration Settings

	Appendix B: Obtaining SNOMED CT Release Files
	Appendix C: Release Types and Versioned Views
	Release Types
	Versioned Views
	C.1. Practical Uses for Versioned Views
	C.2. Release Type Support for Versioned Views
	A key factor when deciding which release type(s) to import is the extent to which each release by supports required views of the terminology content. Table C.2-1 lists the views that may be required and indicates which release types support each of these views.

	C.3. Common Mistakes with Snapshot Generation

