SNOMED CT and LOINC for computable phenotypes in Alzheimer’s Disease

SNOMED CT Expo 2019

James R. Campbell MD
Carol Geary RN PhD
W. Scott Campbell PhD
Daniel Murman MD
Michael Punsoni MD

October 31, 2019

University of Nebraska Medical Center
Omaha, NE USA
Disclosures

We receive no financial support from any interests vending electronic health records or vocabulary services

Portions of this work have been funded by:
NIH 5U01HG009455-02 Deploying ONC national Standards in Support of Metadata for Big Data Research Warehouse Management
PCORI CDRN-1501-26643 CDRN 04:The Greater Plains Collaborative
NIH 1U54GM115458-0, Subproject ID 5422 Great Plains Idea-Ctr-Biomedical Informatics and Cyberinfrastructure Enhancement Core
Learning Objectives

- Understand the importance of Alzheimer’s Disease in geriatric medicine
- Define the concept of "computable phenotype"
- Appreciate the requirements and challenges of conducting observational research in Alzheimer’s Disease
- Understand the value of electronic health record data encoded with SNOMED CT and LOINC in supporting research in Alzheimer’s Disease
Alzheimers Dementia (AD)

- US population is aging; geriatric medicine and supporting function of elderly increasingly important in healthcare.
- Causes of progressive dementia:
 - Alzheimers disease 50-70%
 - Lewy Body disease
 - Frontotemporal disorders (age < 65)
 - Vascular disease
 - ...
Alzheimers Dementia

- Historically, an autopsy diagnosis without clinical prevention or treatment
- Genomic research has demonstrated APOE, PSEN*, APP genes are contributory
- CNS degeneration relates to formation of beta amyloid deposition and subsequent neurofibrillary tangles/degeneration and ultimately cerebral atrophy
- Current nosology and research indicates that amyloid involvement and neurodegeneration is progressive with stages of CNS neuropathology increasingly understood and characterized
- Clinical (symptomatic) correlation is variable and not definitive but understood; asymptomatic ➔ mild cognitive impairment ➔ dementia
"The National Institute on Aging Alzheimer’s Association (NIA-AA) Research Framework released in February 2018 clearly states the need for a common language with which researchers can communicate findings clearly and unambiguously to reliably compare research results and discovery."

Develop, deploy and test extended standards in support of research, clinical care and epidemiology.
BD2K Extension
NIH 5U01HG009455-02

- Develop, test, and deploy ONC national data standards to support EHR data repurposing and interoperability for AD and related dementias
- Support computable phenotyping of critical diagnostic, findings and treatment datasets
- Workplan:
 - Evaluate ONC data standardization for reference professional organization datasets
 - Evaluate standardization deficits: SNOMED CT, LOINC-SNOMED Observables, RXNORM-SNOMED Pharmaceuticals
 - Develop, deploy and test extended standards in support of research, clinical care and epidemiology
Computable Phenotype

“A computable phenotype refers to a set of findings or conditions that can be evaluated via a computerized query to an EHR or clinical data research network”

In the era of the Learning Healthcare System, CPs are increasingly important in semi-automated network patient recruitment and outcomes research

Requires that the EHR maintain well-structured, coded and interoperable data
BD2K Extension
NIH 5U01HG009455-02

- Develop, test, and deploy ONC national data standards to support EHR data repurposing and interoperability for AD and related dementias
- Support computable phenotyping of critical diagnostic, findings and treatment datasets
- Workplan:
 - Evaluate ONC data standardization for reference professional organization datasets
 - Evaluate standardization deficits: SNOMED CT, LOINC-SNOMED Observables, RXNORM-SNOMED Pharmaceuticals
 - Develop, deploy and test extended standards in support of research, clinical care and epidemiology
Clinical Professional Standards

- National Institute on Aging
- Alzheimers Association
- NIAA-AA diagnostic framework and criteria (2011, 2018)
- National Alzheimers Coordinating Center
Clinical Assessment Tools
Cognitive Impairment, Mood Disorders and Functional Assessment

- Montreal Cognitive Assessment (27)
- Mini-mental Status Examination (12)
- Short Test of Mental Status (9)
- Geriatric Depression Scale (36)
- Barthel Index (ADLs) (11)
- Functional Activities Questionnaire (IADLs) (11)
- Unified Parkinsons Disease Rating Scale (42)
- Neuropsychological examination
Terminology Development Procedures

- Coordinated with IHTSDO Observables project to assure consistency in use of concept model for cognitive testing and autopsy
- Extended SNOMED CT for genomic observables and clinical findings
- From semantic analysis of instruments, developed Observables for results and Clinical findings for diagnoses as needed
LOINC: 72106-8 Folstein mini-mental state examination total score
(Observable entity)
Clinical Biomarkers
Amyloid/Tau protein/Neurodegeneration

- Laboratory: LOINC coding comprehensive since v2.04
 - CSF Aβ42, phosphorylated Tau, total Tau
 - Gene sequencing PSEN*, APP, APOE; (FUS, C9ORF72, MAPT, GRN, SNC*, CHMP2B, GRN, TARDBP)
- Radiology: LOINC > v2.63
 - Head CT
 - Brain and spinal MRI, functional MRI
 - Brain PET with FDG, amyloid, tau
- No interoperation definitions for IUPAC or SNOMED community
LOINC:33203-1 Amyloid beta 42 peptide [Mass/volume] in Cerebral spinal fluid (Observable entity)
LOINC:35299-7 PSEN1 gene mutations found [Identifier] in Tissue by Molecular genetics (Observable entity)
Supportive Therapies

- Cholinesterase inhibitors:
 - Donepezil (Aricept) 10 mg oral tablet
 - RXNORM: 997223
 - SNOMED CT: 323365007

- Anti-psychotics
- Antidepressents
- Bipolar treatments
- Parkinsons therapies
- >2900 medications; US pharmacopoeia complete in RXNORM; well-represented in SNOMED CT
CNS Autopsy

National Association for Alzheimer’s Coordinating Center (U Washington) Neuropathology Data Set v10

- Data dictionaries published and maintained since 2006 but no reference coding standards
- 90+ data items aligned with revision of NIA-AA criteria (2014)
- No ONC LOINC, SNOMED CT or ICD* data encoding
Observable: Thal phase staging of beta amyloid plaques in brain

Terminology Review and Development

<table>
<thead>
<tr>
<th>Category</th>
<th>SNO MED CT</th>
<th>LOINC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Assessment</td>
<td>(18 Neb Observables)</td>
<td>37</td>
<td>148</td>
</tr>
<tr>
<td>Clinical Biomarkers</td>
<td>Most as Procedures</td>
<td>88</td>
<td>16</td>
</tr>
<tr>
<td>Therapies</td>
<td>100% Subst/PharmProd</td>
<td>--</td>
<td>2915</td>
</tr>
<tr>
<td>Autopsy</td>
<td>(82 Neb Observables)</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Diagnoses</td>
<td>(29 Neb ClinFind)</td>
<td>--</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>40 ClinFind</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Nebraska Lexicon extension concepts developed for project)
Validation: 50 autopsy cases with dementia

<table>
<thead>
<tr>
<th>Observation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thal phase staging beta amyloid plaques in brain</td>
<td></td>
</tr>
<tr>
<td>Braak stage neurofibrillary tangle score: V-VI</td>
<td></td>
</tr>
<tr>
<td>CERAD neuritic plaque score: Frequent (C3)</td>
<td></td>
</tr>
<tr>
<td>Cerebral amyloid angiopathy</td>
<td></td>
</tr>
<tr>
<td>NIA-AA Alzheimer pathology score: A2, B3, B3</td>
<td></td>
</tr>
<tr>
<td>Weight of whole brain</td>
<td>1243</td>
</tr>
<tr>
<td>Presence of meningeal pathology</td>
<td>15/48</td>
</tr>
<tr>
<td>Presence of atherosclerosis</td>
<td>24/42</td>
</tr>
<tr>
<td>Presence of cerebral cortical atrophy of brain</td>
<td>35/38</td>
</tr>
<tr>
<td>Presence ventricular dilatation on gross exam</td>
<td>24/35</td>
</tr>
</tbody>
</table>

...total of 82 data items

Final Diagnosis:
Brain: Alzheimer Disease
- Amyloid plaque phase: Phase 3 (A2)
- Braak neurofibrillary tangle score: V-VI (B3)
- CERAD neuritic plaque score: Frequent (C3)
- Cerebral amyloid angiopathy
- NIA-AA Alzheimer pathology score: A2, B3, B3

Signed: [Electronic signature]

Clinicopathologic Correlation:
The patient is a 78-year-old woman with a history of progressive dementia for 7-8 years. Postmortem examination of the brain revealed Alzheimer disease. The pathologic changes corresponded to her clinical dementia. There were no pathologic features of Lewy body disease or other neurodegenerative disease, and no evidence of vascular/ischemic brain injury.

Clinical History:
The patient is a 78-year-old woman who had been followed in the Memory Disorders Clinic and had symptoms consistent with Alzheimer disease for the previous seven to eight years. Her more recent clinical findings included increasing confusion, requirement of assistance for activities of daily living (bathing, toileting, dressing), shuffling gait, inability to hold conversation and inability to write. Her most recent head...
Validation: 50 autopsy cases with dementia

<table>
<thead>
<tr>
<th>Observable entity</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thal phase staging beta amyloid plaques in brain</td>
<td>Stage 3-4</td>
</tr>
<tr>
<td>Braak stage neurofibrillary degeneration in brain</td>
<td>Stage 4</td>
</tr>
<tr>
<td>CERAD score for neuritic plaques in brain</td>
<td>Moderate-Frequent</td>
</tr>
<tr>
<td>Weight of whole brain</td>
<td>1243 grams</td>
</tr>
<tr>
<td>Presence of meningeal pathology</td>
<td>Present 15/48</td>
</tr>
<tr>
<td>Presence of atherosclerosis</td>
<td>Present 24/42</td>
</tr>
<tr>
<td>Presence of cerebral cortical atrophy of brain on gross exam</td>
<td>Present 35/38</td>
</tr>
<tr>
<td>Presence ventricular dilatation on gross exam</td>
<td>Present 24/35</td>
</tr>
</tbody>
</table>

...total of 82 data items
Final Diagnoses:
50 autopsy cases with dementia

<table>
<thead>
<tr>
<th>SNOMED CT</th>
<th>Fully Specified Name</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>481291000004108</td>
<td>Intermediate level Alzheimers neuropathology changes (disorder)</td>
<td>23</td>
</tr>
<tr>
<td>481311000004107</td>
<td>High level Alzheimers neuropathology changes (disorder)</td>
<td>13</td>
</tr>
<tr>
<td>230724001</td>
<td>Cerebral amyloid angiopathy (disorder)</td>
<td>8</td>
</tr>
<tr>
<td>278849000</td>
<td>Cerebral atrophy (disorder)</td>
<td>8</td>
</tr>
<tr>
<td>62914000</td>
<td>Cerebrovascular disease (disorder)</td>
<td>8</td>
</tr>
<tr>
<td>80098002</td>
<td>Diffuse Lewy Body Disease</td>
<td>7</td>
</tr>
<tr>
<td>471041000004103</td>
<td>Low level Alzheimers neuropathology changes (disorder)</td>
<td>6</td>
</tr>
<tr>
<td>256081000004103</td>
<td>Alzheimers type II astrocytosis neuropathologic changes (finding)</td>
<td>5</td>
</tr>
<tr>
<td>2032001</td>
<td>Cerebral edema (disorder)</td>
<td>5</td>
</tr>
</tbody>
</table>
Conclusions

- Computable phenotyping in AD is a major challenge due to the paucity of coded data
- Significant SNOMED CT terminology development is required to support clinical assessment, neuroanatomical reporting and diagnostic granularity for clinical care and research in Alzheimer's Dementia
- Both SNOMED CT and LOINC are insufficient for capturing datasets supporting cognitive assessment tools and neuroanatomical autopsy
Questions?
campbell@unmc.edu