

OHDSI

SNOMED-CT Expo 19-October-2018

FDA Regulatory Action over Time

Number of FDA-caused Withdrawals

FDAAA calls for establishing Risk Identification and Analysis System

SEC. 905. ACTIVE POSTMARKET RISK IDENTIFICATION AND ANALYSIS.

(a) IN GENERAL.—Subsection (k) of section 505 of the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 355) is amended by adding at the end the following:

"(3) ACTIVE POSTMARKET RISK IDENTIFICATION.—

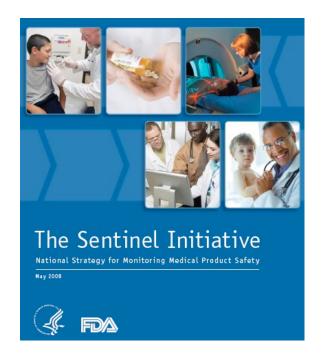
"(A) DEFINITION.—In this paragraph, the term 'data' refers to information with respect to a drug approved under this section or under section 351 of the Public Health Service Act, including claims data, patient survey data, standardized analytic files that allow for the pooling and analysis of data from disparate data environments, and any other data deemed appropriate by the Secretary.

"(B) DEVELOPMENT OF POSTMARKET RISK IDENTIFICA-TION AND ANALYSIS METHODS.—The Secretary shall, not later than 2 years after the date of the enactment of the Food and Drug Administration Amendments Act of 2007, in collaboration with public, academic, and private

entities-

"(i) develop methods to obtain access to disparate data sources including the data sources specified in subparagraph (C);

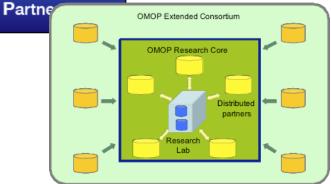
"(ii) develop validated methods for the establishment of a postmarket risk identification and analysis system to link and analyze safety data from multiple sources, with the goals of including, in aggregate—


"(I) at least 25,000,000 patients by July 1,

2010; and

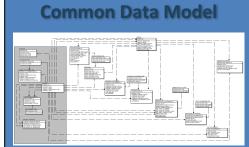
"(II) at least 100,000,000 patients by July 1, 2012; and

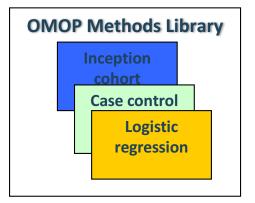
"(iii) convene a committee of experts, including individuals who are recognized in the field of protecting data privacy and security, to make recommendations to the Secretary on the development of tools and methods for the ethical and scientific uses for, and communication of, postmarketing data specified under subparagraph (C), including recommendations on the development of effective research methods for the study of drug safety questions.


"(C) ESTABLISHMENT OF THE POSTMARKET RISK IDENTI-FICATION AND ANALYSIS SYSTEM.—

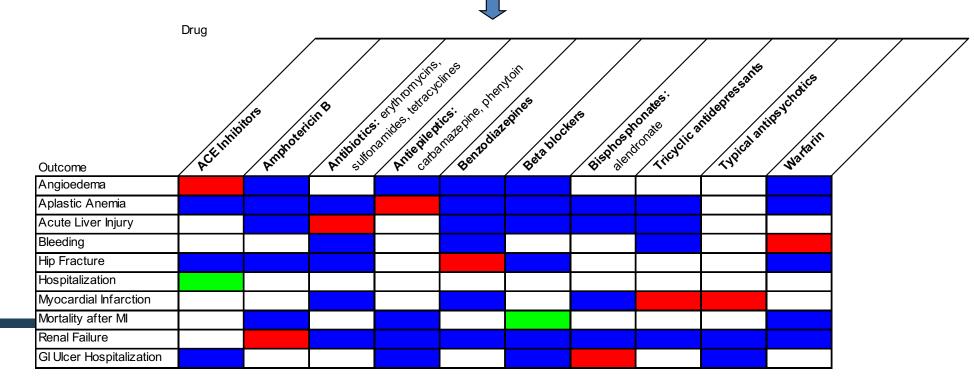
Risk Identification and Analysis System:

a systematic and reproducible process to efficiently generate evidence to support the characterization of the potential effects of medical products from across a network of disparate observational healthcare data sources Observational Medical Outcomes


OMOP Experiment 1 (2009-2010)

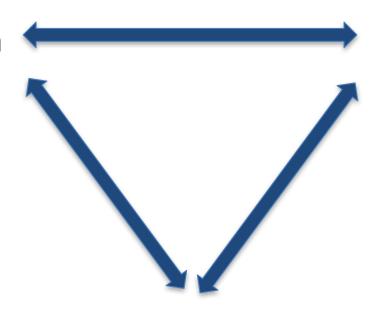


- 10 data sources
- Claims and EHRs
- 200M+ lives


- Open-source
- Standards-based

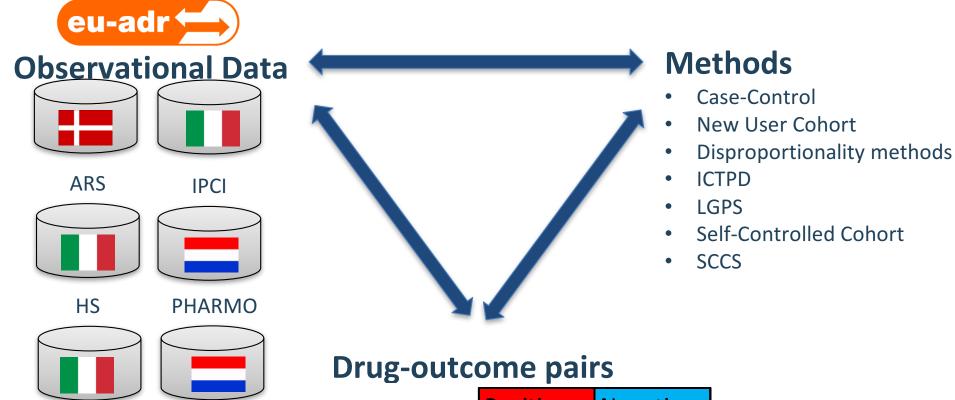
- 14 methods
- · Epidemiology designs
- Statistical approaches adapted for longitudinal data

OMOP Experiment 2 (2011-2012)


Observational Data

4 claims databases

1 ambulatory EMR


Methods

- Case-Control
- New User Cohort
- Disproportionality methods
- ICTPD
- LGPS
- Self-Controlled Cohort
- SCCS

Drug-outcome pairs

	Positives	Negatives
Total	165	234
Myocardial Infarction	36	66
Upper GI Bleed	24	67
Acute Liver Injury	81	37
Acute Renal Failure	24	64

European OMOP Experiment

	Positives	Negatives
Total	165	234
Myocardial Infarction	36	66
Upper GI Bleed	24	67
Acute Liver Injury	81	37
Acute Renal Failure	24	64

Ground Truth for OMOP Experiment

	isoniazid fluticasor	ne			
		Positive	Negative	indometh	acin
		controls	controls	Total cline	damycin
	Acute Liver Injury	81	37	118	
	Acute Myocardial Infarction	36	66	102	
	Acute Renal Failure	₇ 24	₇ 64	88	
	Upper Gastrointestinal Bleeding	24	67	91	
	Total ibuprofen	165	234	399 pioglitazo	ne
Criteria for positive controls: • Event listed in Boxed Warning or Warnings/Precautions section of active FDA structured product label					

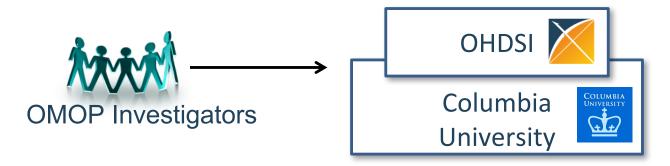
- product label
- Drug listed as 'causative agent' in Tisdale et al, 2010: Drug-Induced Diseases
- Literature review identified no powered studies with refuting evidence of effect

Criteria for negative controls:

- Event not listed anywhere in any section of active FDA structured product label
- Drug not listed as 'causative agent' in Tisdale et al, 2010: Drug-Induced Diseases
- Literature review identified no powered studies with evidence of potential positive association

Results

Main findings in OMOP experiment


- Heterogeneity in estimates due to choice of database
- Heterogeneity in estimates due to analysis choices
- Except little heterogeneity due to outcome definitions
- Good performance (AUC > 0.7) in distinguishing positive from negative controls for optimal methods when stratifying by outcome and restricting to powered test cases
- Self controlled methods perform best for all outcomes

Observational Health Data Sciences and Informatics (OHDSI) Plans and Ambitions

Fate of OMOP - OHDSI

- The Observational Health Data Sciences and Informatics (OHDSI)
 program is a multi-stakeholder, interdisciplinary collaborative to
 create open-source solutions that bring out the value of
 observational health data through large-scale analytics
- OHDSI has established an international network of researchers and observational health databases with a central coordinating center housed at Columbia University
 - -Public, Open
 - -Not Pharma-funded
 - -International

http://ohdsi.org

OHDSI's Mission & Vision

To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care.

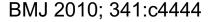
A world in which observational research produces a comprehensive understanding of health and disease.

Join us on the journey

http://ohdsi.org

OHDSI: a global community

OHDSI Collaborators:


- >220 researchers in academia, industry and government
- >21 countries

OHDSI Data Network:

- >114 databases from 19 countries
- 1.9 billion patients records (duplicates)
- ~222 million non-US patients

Observational Research has a Problem

RESEARCH

Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case-control analysis within a UK primary care cohort

Jane Green, clinical epidemiologist,¹ Gabriela Czanner, statistician,¹ Gillian Reeves, statistical epidemiologist,¹ Joanna Watson, epidemiologist,¹ Lesley Wise, manager, Pharmacoepidemiology Research and Intelligence Unit,² Valerie Beral, professor of cancer epidemiology¹

JAMA 2010; 304(6): 657-663

JAMA°

Exposure to Oral Bisphosphonates and Risk of Esophageal Cancer

Chris R. Cardwell, PhD
Christian C. Abnet, PhD
Marie M. Cantwell, PhD
Liam J. Murray, MD

Context Use of oral bisphosphonates has increased dramatically in the United States and elsewhere. Esophagitis is a known adverse effect of bisphosphonate use, and recent reports suggest a link between bisphosphonate use and esophageal cancer, but this has not been robustly investigated.

Objective To investigate the association between bisphosphonate use and esoph-

What is the quality of the current evidence from observational analyses?

ORIGINAL CONTRIBUTION

JAMA°

Exposure to Oral Bisphosphonates and Risk of Esophageal Cancer

Chris R. Cardwell, PhD	
Christian C. Abnet, PhD	
Marie M. Cantwell, PhD	
Liam I. Murray, MD	

Context Use of oral bisphosphonates has increased dr and elsewhere. Esophagitis is a known adverse effect o cent reports suggest a link between bisphosphonate us this has not been robustly investigated.

Objective To investigate the association between bi

August2010: "Among patients in the UK General Practice Research Database, the use of oral bisphosphonates was not significantly associated with incident esophageal or gastric cancer"

cause serious esophagitis in some users.4,5 Crystalline material that resembles ground alendronate tablets has been found on biopsy in patients with bisphosphonate-related esophagitis, and follow-up endoscopies have shown that abnormalities remain after the esophagitis heals.6 Reflux esophagitis is an established risk factor for esophageal cancer through the Barrett pathway.7-9 It is not known whether bisphosphonaterelated esophagitis can also increase esophageal cancer risk. However, the US Food and Drug Administration recently reported 23 cases of esophageal cancer (between 1995 and 2008) in patients using the bisphosphonate alen-

there were 41 826 members in each cohort (81% v 11.4) years). One hundred sixteen esophageal or gas occurred in the bisphosphonate cohort and 115 (72 cohort. The incidence of esophageal and gastric cancer person-years of risk in both the bisphosphonate and o of esophageal cancer alone in the bisphosphonate a and 0.44 per 1000 person-years of risk, respectively. T of esophageal and gastric cancer combined between phonate use (adjusted hazard ratio, 0.96 [95% confid risk of esophageal cancer only (adjusted hazard ratio, val, 0.77-1.49]). There also was no difference in risk of by duration of bisphosphonate intake.

Conclusion Among patients in the UK General Practic of oral bisphosphonates was not significantly associate gastric cancer.

JAMA. 2010;304(6):657-663

Large studies with appropriate com- termine w parison groups, adequate follow-up, ro-

RESEARCH

Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case-control analysis within a UK primary care cohort

Jane Green, clinical epidemiologist, Gabriela Czanner, statistician, Gillian Reeves, statistical epidemiologist, Joanna Watson, epidemiologist, Lesley Wise, manager, Pharmacoepidemiology Research and Intelligence Unit,2 Valerie Beral, professor of cancer epidemiology1

demiology Unit,

and Healthcare legulatory Agency, oidemiology Research lence to: I Green ceu.ox.ac.uk

ABSTRACT

Objective To examine the hypothesis that risk of oesophageal, but not of gastric or colorectal, cancer is increased in users of oral bisphosphonates. Design Nested case-control analysis within a primary care cohort of about 6 million people in the UK, with prospectively recorded information on prescribing of bisphosphonates.

Setting UK General Practice Research Database cohort. Participants Men and women aged 40 years or over-2954 with oesophageal cancer, 2018 with gastric cancer, and 10 641 with colorectal cancer, diagnosed in 1995Conclusions The risk of oesophageal cancer increased with 10 or more prescriptions for oral bisphosphonates and with prescriptions over about a five year period. In Europe and North America, the incidence of o esophageal cancer at age 60-79 is typically 1 per 1000 population over five years, and this is estimated to increase to about 2 per 1000 with five years' use of oral bisphosphonates.

Adverse gastrointestinal effects are common among people who take oral bisphosphonates for the prevention and treatment of osteoporosis; they range from

Sept2010: "In this large nested case-control study within a UK cohort [General Practice Research Database], we found a significantly increased risk of oesophageal cancer in people with previous prescriptions for oral bisphosphonates"

What is the quality of the current evidence from observational analyses?

ORIGINAL CONTRIBUTION

JAMA°

Oral Fluoroquinolones an of Retinal Detachment

Mahyar Etminan, PharmD, MSc (epi) Farzin Forooghian, MD, MSc, FRCSC James M. Brophy, MD, PhD, FRCPC Steven T. Bird, PharmD

David Maberley, MD, MSc, FRCSC

detachment"

sociated with a wide array of adverse

events such as dysglycemia,1 cardiac ar-

rhythmia,2 and neuropsychiatric

events.3 Fluoroquinolones also have

dence for retinal degeneration with use

riet

Alt

ally

Context Fluoroquinolon numerous case reports of ocular safety, particularly

Objective To examine th risk of developing a retina

Design, Setting, and Pa in British Columbia, Cana

April2012: "Patients taking oral fluoroguinolones

were at a higher risk of developing a retinal

Research

Original Investigation

Association Between Oral Fluoroquinolone Use and Retinal Detachment

Björn Pasternak, MD, PhD; Henrik Svanström, MSc; Mads Melbye, MD, DrMedSci; Anders Hviid, MSc, DrMedSci

IMPORTANCE A recent study of ophthalmologic patients found a strong association between fluoroguinolone use and retinal detachment. Given the prevalent use of fluoroguinolones, this could, if confirmed in the general population, translate to many excess cases of retinal detachment that are potentially preventable.

and cases or reamar detacriment with surgical treatment (scleral buckling, vitrectomy, or

W. The cohort included 740 702 epicodes of flue pneumatic retine

(660 572 [88%

MAIN OUTCOME

for incident reti variables. The r recent use (day

been linked to several forms of ocular toxicity such as corneal perforations,4 optic neuropathy,5 and retinal hemorrhages.6 In 2011, the label for gemifloxacin was updated to include hemorrhage,6 which includes retinal hemorrhage that was reported during postmarketing surveillance. A classwide warning for fluoroquinolones also has been issued for tendon rupture,7 which raises concerns for the effect of these drugs on connective tissue in the eye. Animal studies also provide evi-

a higher risk of developing adjusted rate ratio [ARR], 4 vs 0.2% of controls; ARR 6.1% of controls; ARR, 1 tachment. The absolute in person-years (number nee lones). There was no evide tachment and B-lactam a β-agonists (ARR, 0.95 [95

Conclusion Patients tak ing a retinal detachment of condition was small.

JAMA. 2012;307(13):1414-1419

through the destructive drugs on collagen and tissue.11 Collagen fibers role in the structure a al fluoroguinolone use is associated with an increased risk of

PANTS A nationwide, register-based cohort study in Denmark linked data on participant characteristics, filled prescriptions,

Dec2013: "Oral fluoroquinolone use was not associated with increased risk of retinal detachment"

JAMA

Editorial page 2151

jama.com

JAMA Patient Page 2212

Supplemental content at

RESULTS A total of 566 cases of retinal detachment occurred, of which 465 (82%) were rhegmatogenous detachments; 72 in fluoroquinolone users and 494 in control nonusers. The crude incidence rate was 25.3 cases per 100 000 person-years in current users, 18.9 in recent users, 26.8 in past users, and 24.8 in distant users compared with 19.0 in nonusers. Compared with nonuse, fluoroquinolone use was not associated with a significantly increased risk of retinal detachment: the adjusted RRs were 1.29 (95% CI, 0.53 to 3.13) for current use;

What is the quality of the current evidence from observational analyses?

British Journal of Clinical Pharmacology

DOI:10.1111/j.1365-2125.2012.04325.x

Pioglitazone and | BM cancer: a propens matched cohort s

BMJ 2012;344:e3645 doi: 10.1136/bmj.e3645 (Published 31 May 2012)

Page 1 of 11

Li Wei, Thomas M. MacDonald

Medicines Monitoring Unit (MEMO), Division c Medical School, Dundee, UK

BJCP May 2012: "In this study population, pioglitazone does not appear to be significantly associated with an increased risk of bladder cancer in patients with type 2 diabetes."

RESEARCH

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

- · Pioglitazone is mainly used in with diet and exercise and oth anti-diabetic medications to tre diabetes mellitus.
- Long term use of pioglitazone of therapy) may be associated increased risk of bladder cance

The use of pioglitazone and the risk of bladder cancer ted case-control

BMJ May 2012: "The use of pioglitazone is associated with an increased risk of incident bladder cancer among people with type 2 diabetes."

tian B Filion assistant professor 13,

WHAT THIS STUDY ADDS

 In this study population, pioglitazone does not appear to be significantly associated with an increased risk of bladder cancer in patients with type 2 diabetes.

Jonathan Assayag *graduate student*, Agnieszka Majdan *endocrinologist*⁴, Michael N Pollak oncologist and professor², Samy Suissa professor⁵

¹Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine, H-425.1, Montreal, Quebec, Canada, H3T 1E2; ²Department of Oncology, McGill University, Montreal, Quebec, Canada; ³Division of Clinical Epidemiology, McGill University, Montreal; ⁴Division of Endocrinology, Jewish General Hospital, Montreal; ⁵Department of Epidemiology, Biostatistics, and Occupational Health, McGill University,

What is the quality of the current evidence from observational analyses?

The NEW ENGLAND JOURNAL of MEDICINE

PERSPECTIVE

DABIGATRAN AND POSTMARKETIN

Dabigatran and Postmarketing Reports of Bleeding

Mary Ross Southworth, Pharm.D., Marsha E. Reichman, Ph.D., and Ellis F. Unger, M.D.

n the months following the ap-

The RE-LY trial enrolled pa- would be re

Nov2012: FDA released risk communication about the bleeding risk of dabigatran, based on unadjusted cohort analysis performed within Mini-Sentinel

ports of bleeding were anticipated. hemorrhagic strokes than warfa- and degree

but the rate of was unusually hi er than the co reported bleeding warfarin, which coagulant of che years before da proved. In contr trial that support dabigatran (Rar tion of Long-Terr Therapy [RE-LY]) warfarin with o tients with non brillation,1 show drugs conferred bleeding.

The postmar bleeding with of discussions in tions as well as media about the of the drug. Mar sions cited the l reports of ble CLINICIAN UPDATE

The Promise of Pharmacoepidemiology in Helping Clinicians Assess Drug Risk

Jerry Avorn, MD

Aug2013: "However, the absence of any adjustment for possible confounding and the paucity of actual data made the analysis unsuitable for informing the care of patients"

Letters

JAMA Internal Medicine

Formerly Archives of Internal Medicine

RESEARCH LETTER

Editor's Note

A Comparison of Results of the US Food and Drug Administration's Mini-Sentinel Program With Randomized Clinical Trials: The Case of Gastrointestinal Tract Bleeding With Dabigatran Results | Twenty-seven articles were identified using the MEDLINE search. Three articles provided data on incident GI tract bleeding with dabigatran vs warfarin.²⁻⁶ A search of the FDA website provided additional data on GI tract bleeding for one of these clinical trials⁵ and search of the clinical trials registry of manufacturer provided data for another clinical trial.⁶

Dec2013: "This analysis shows that the RCTs and Mini-Sentinel Program show completely opposite results"

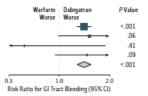
tract bleeding risk of dabigatran vs warfarin with the results of randomized clinical trials (RCTs).

Methods | To obtain the results of RCTs regarding GI tract bleeding, a literature search was performed using MEDLINE through July 2013 with the search term "dabigatran AND warfarin" limited to RCTs. This search was supplemented with examination of the FDA website for additional data, as

well as a search of the clinical trial registry website maintained by dabigatran's manufacturer. The RCTs

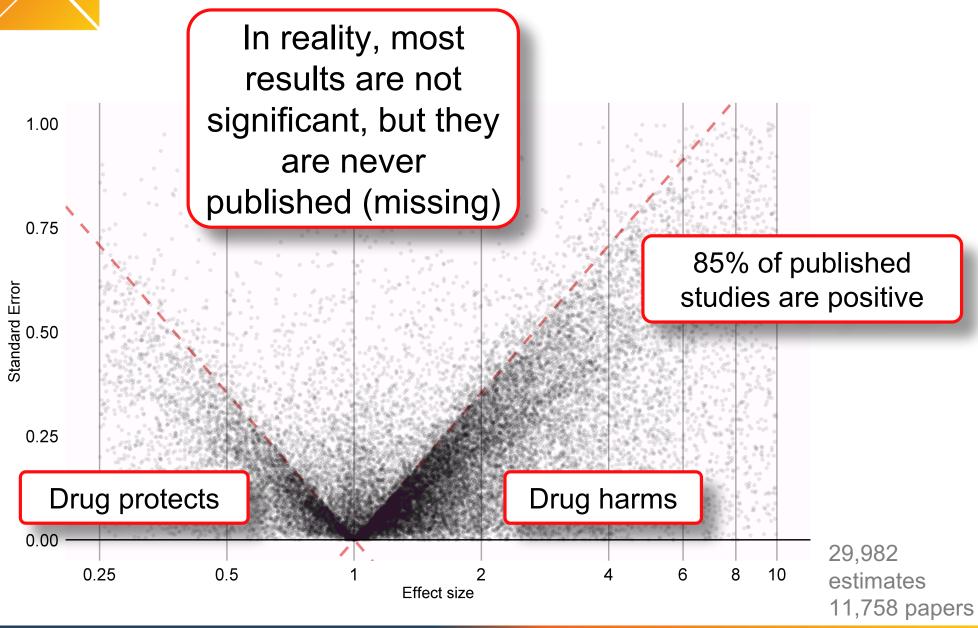
directly comparing dabigatran to warfarin that reported incident GI tract bleeding were then included in a meta-analysis. The meta-analytic risk ratio (RR) of dabigatran vs warfarin for GI tract bleeding was calculated using a fixed-effect model. The results of this meta-analysis were then

-Sentinel Program and


the agency concluded that GI tract bleeding rates are not higher (and indeed lower) with dabigatran, attributed the postmarketing reports of bleeding to "stimulated reporting" and released a reassuring statement about the bleeding risks of this drug.

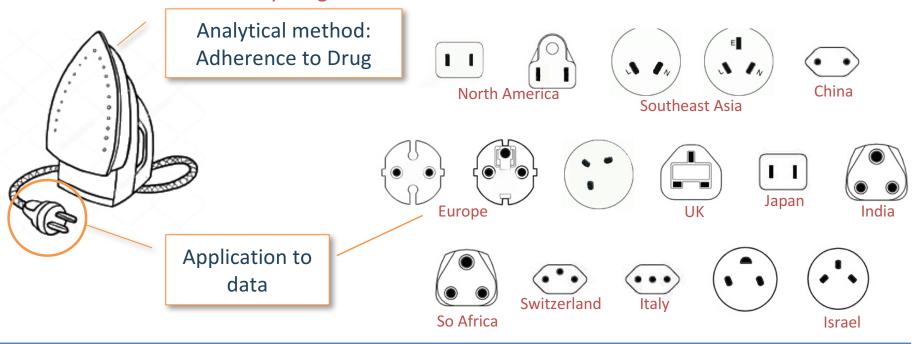
Discussion | This analysis shows that the RCTs and Mini-Sentinel Program show completely opposite results regarding the GI tract bleeding risk of dabigatran compared with warfarin. The meta-analytic results of the RCTs have very narrow confidence intervals and no heterogeneity, demonstrating the increased risk of GI tract bleeding with dabigatran (vs warfarin) unequivocally. However, the Mini-Sentinel Program reports a greater than 50% decrease in incident GI tract bleeding with dabigatran compared with warfarin.

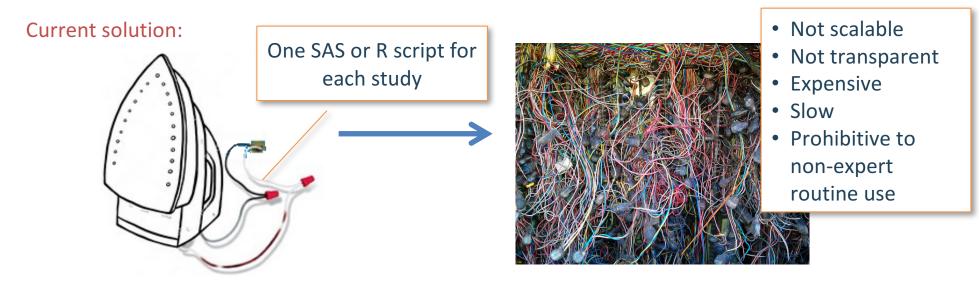
Observational studies like the Mini-Sentinel Program are inherently problematic owing to several sources of biases. Because of their limitations, the approval process of drugs relies solely on RCTs. Nevertheless, observational studies are still per-


Trials Reporting Gastrointestinal (GI) Tract Bleeding With Dabigatran vs Warfarin (Fixed-Effect Model)

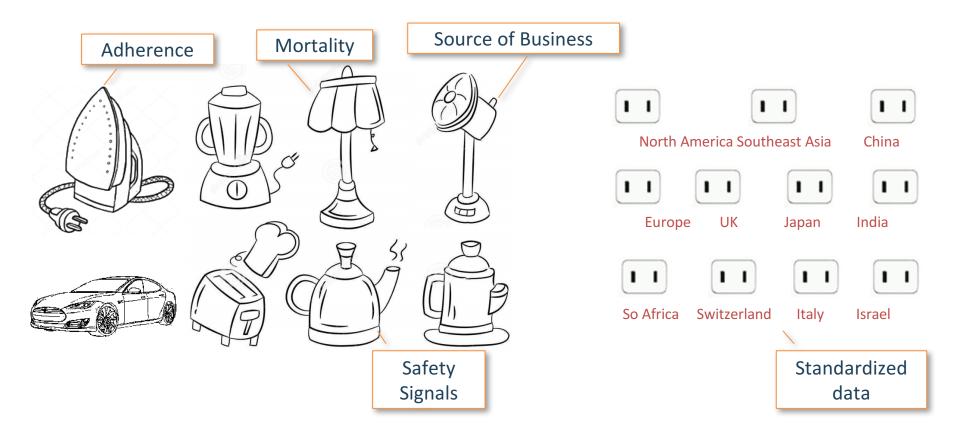
	Total		Risk Ratio	
,	Dabigatran	Warfarin	(95% CI)	
	12091	6022	1.41 (1.27-1.56)	
	1274	1265	1.50 (0.99-2.29)	
	1430	1426	0.62 (0.20-1.90)	
	1279	1289	1.47 (0.95-2.27)	
	16074	10002	1.41 (1.28-1.55)	

The current literature is severely biased

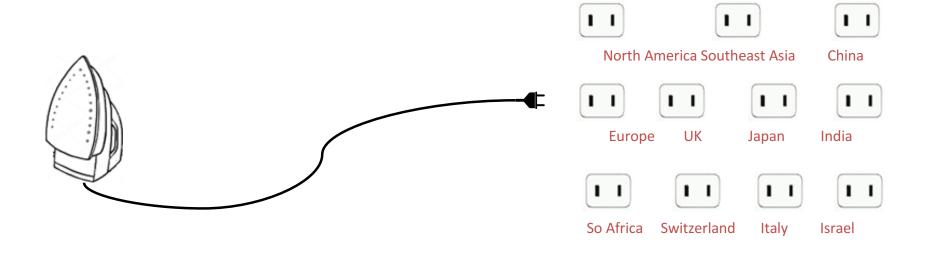

Current pace of evidence generation in healthcare


All health outcomes of interest

Current Approach: "One Study – One Script"

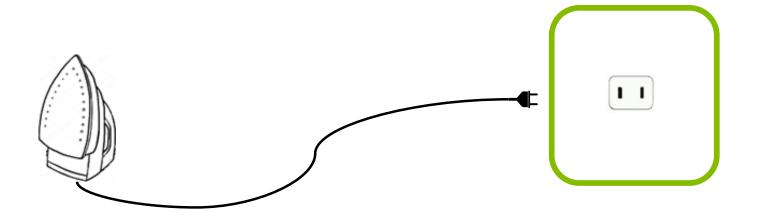

"What's the adherence to my drug in the data assets I own?"

Solution: Data Standardization Enables Systematic Research

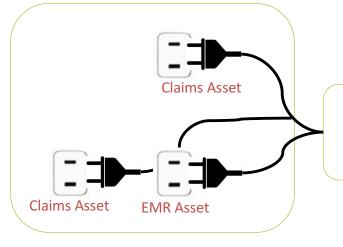


OHDSI Tools

OMOP CDM



Analytics can be remote



Analytics can be behind firewall

Network Studies Networks of networks

Coordinating Center Coordinating

EMR

University

Medical

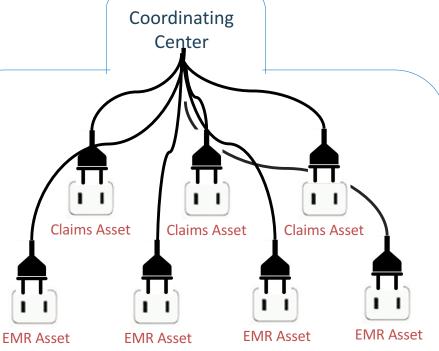
Center

EMR

Inpatient

EMR

Outpatient


Hospital

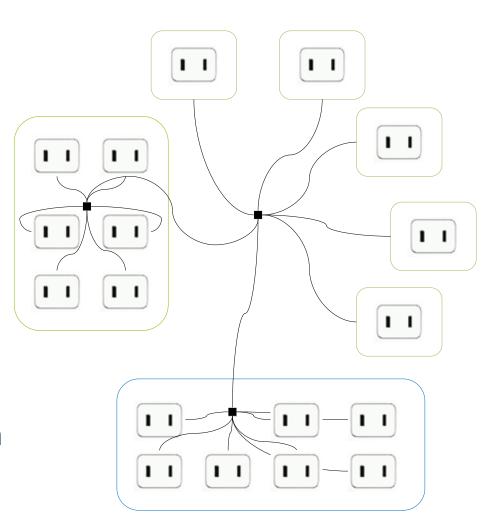
EMR

ISDN

Another Network

Network

A) Incentives for the Node



- Enabling data for research
- ~Free Tools, Methods
 - Vocabulary browsing
 - Population characterization
 - Adjudication and validation
 - Population-based estimation
 - Patient-level prediction
- Quality benchmarks
- Scientific reputation
- Potentially money

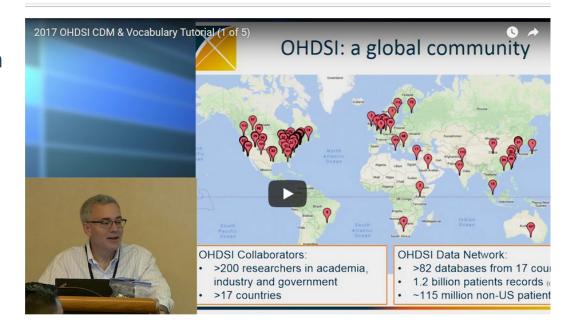
b) Feeding the Network

- Foundational
 - CDM
 - Vocabulary, Mapping
 - Community
 - Training
- Trust
 - Open Source
 - Nodes keep control over data
- Methodology
- Technology, tools, automation
- Use cases, scientific impact
- Reciprocity, no autocracy

Tutorials

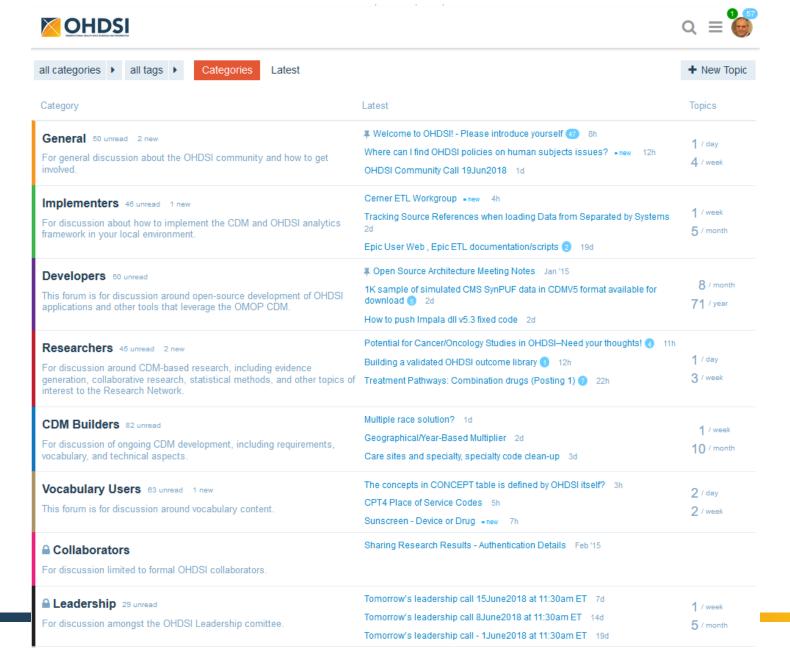
- OMOP CDM and Vocabulary
- Overview of the OHDSI Analysis
- OHDSI Tech Stack
- Data ETL
- Cohort Definition/Phenotyping
- Patient-Level Prediction
- Population-level Effect Estimation
- Data Quality

2017 Tutorials – OMOP Common Data Model and Standardized Vocabularies

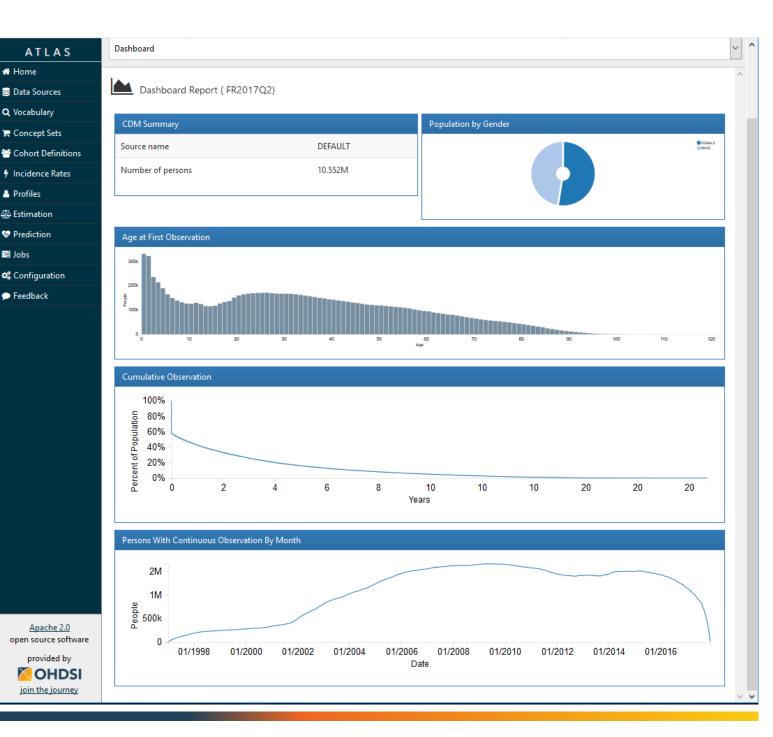

Faculty

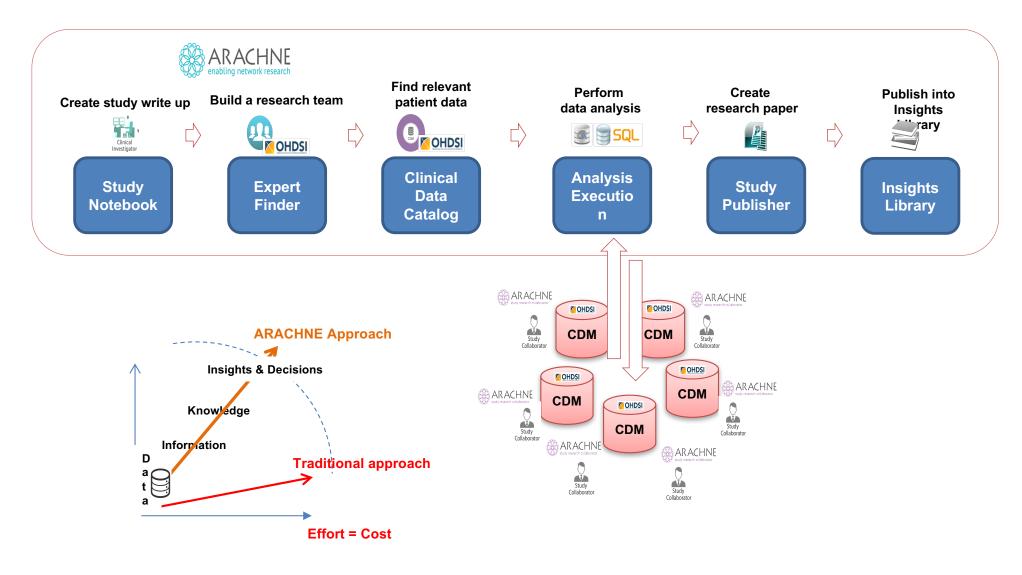
George Hripcsak, Christian Reich, Erica Voss, Karthik Natarajan, Mark Velez, Mui Van Zandt, Rimma Belenkaya, Don O'Hara, Michael Goodman, Gowtham Rao, Dmytry Dymshyts, Don Torok, Clair Blacketer

Target Audience:

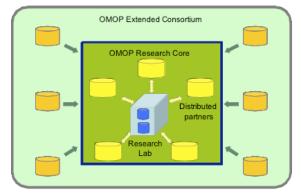

Data holders who want to apply OHDSI's data standards to their own observational datasets and researchers who want to be aware of OHDSI's data standards so they can leverage data in OMOP CDM format for their own research purposes.

Videos

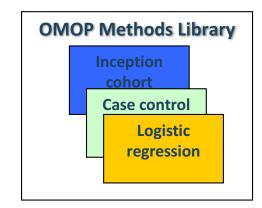

Forum, Workgroups


Atlas, Achilles, Athena

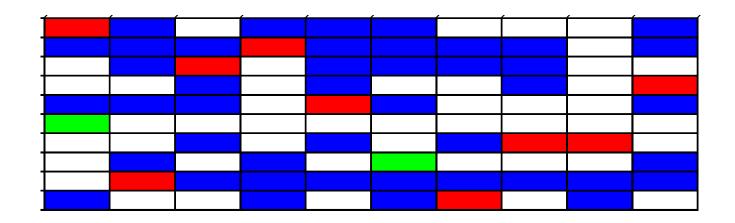
≡ Jobs



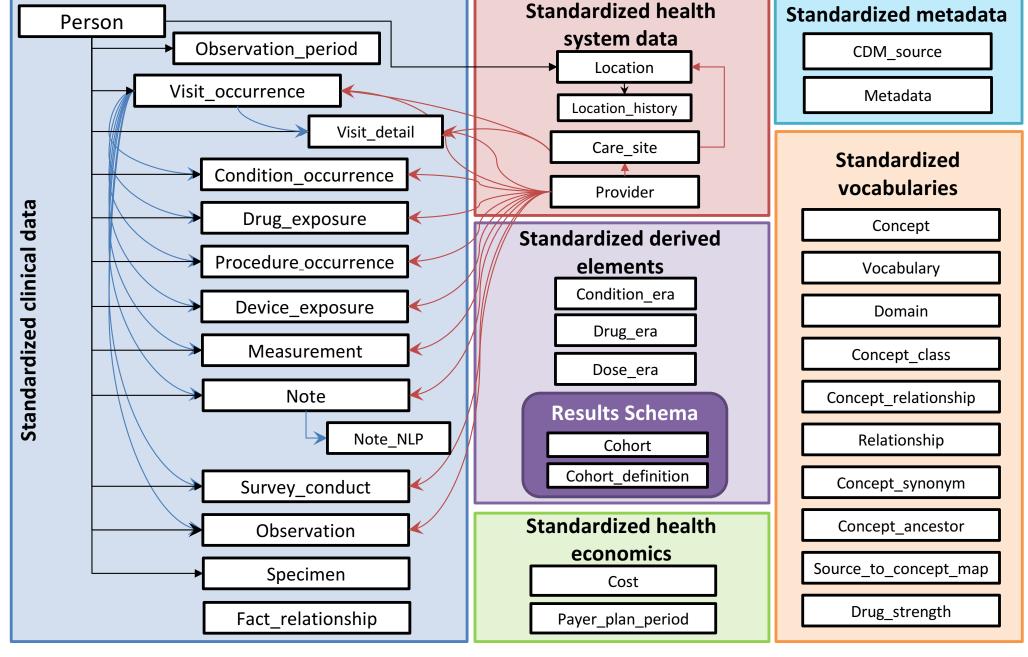
ARACHNE Research Collaboration Network and Workflow Suite



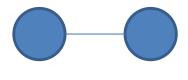
Common Data Model

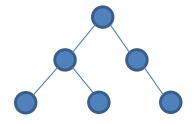


• 10 data_Dsgurces



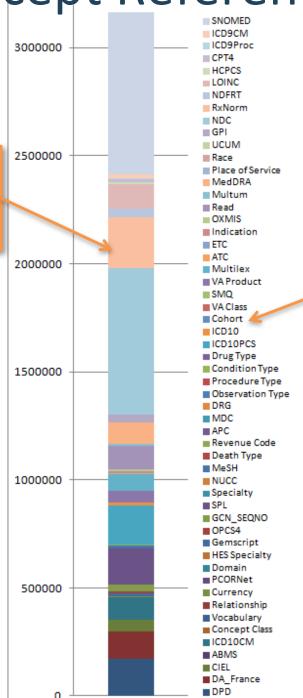
14 methods


CDM Version 6 Key Domains



Structure of OMOP Vocabulary

All content: concepts in concept


Direct relationships between concepts in concept relationship

Multi-step hierarchical relationships pre-processed into concept ancestor

Single Concept Reference Table

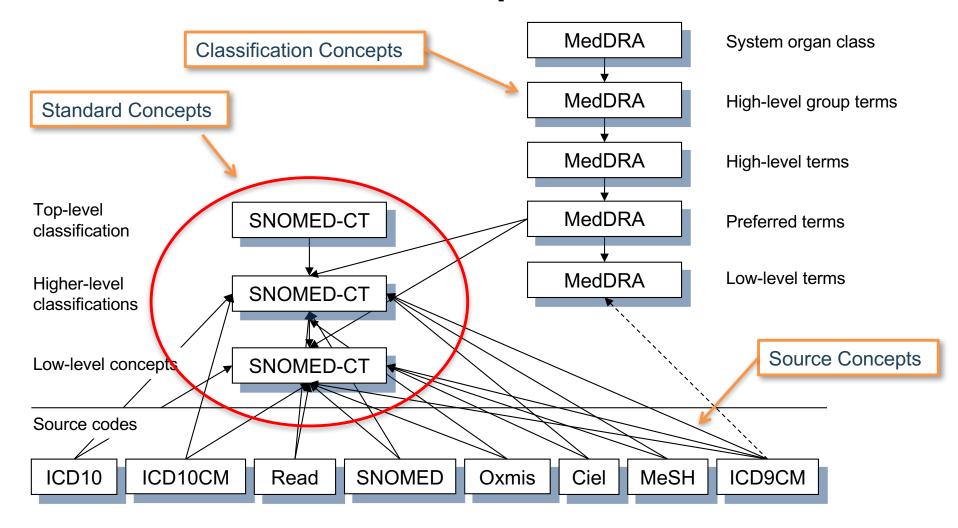
All vocabularies stacked up in one table

Vocabulary ID

Dozens of schemes, formats, rules

LOINC_248_MULTI-AXIAL_HIERARCHY.CSV

PATH_TO_ROOT		SEQU	ENCIIM	MEDIATE_PAREN	T CODE	CODE_TEXT				
			1		LP31755-9	Microbiology				
LP31755-9			1 LP3:	1755-9	LP14559-6	Microorganism				
LP31755-9.L			1 LP1	4559-6	LP98185-9	Bacteria				-
_{P31755-9.L} loinc.csv			1 LP9	8185-9	LP14082-9	Bacteria				
P31755-9. LOINC_NLCOMPONENT		PROPERTY	TIME_A	SPCT SYSTEM	SCALE_TYI	P METHOD_TYP	CLASS	SOURCE	DATE_LAST_CHCHNG_1	TYICON
P31755-9. 10454-7 Xylose^2H post 25 g x	ylose PO	MCnc	Pt	Ser/Plas	Qn		CHAL	SH	19961220 ADD	
P31755-9. 10455-4 Xylose^30M post 25 g	xylose PO	MCnc	Pt	Ser/Plas	Qn		CHAL	SH	19961220 ADD	
P31755-9. 10456-2 Xylose^post 6H CFst		MCnc	Pt	Ser/Plas	Qn		CHAL	SH	19961220 ADD	
P31755-9. 10457-0 Actin Ag	CNAS	33 DE	SC 1	ONG SH	OPT DI	/ vlcv	PATH	SH;DL-M	20060706 MIN	
D31755-9 10458-8 Alkaline phosphatase		3Z_DE	3C_L	ONG_SH		V.XISX	PATH	DL-M	20060706 MIN	
10459-6 Alpha-1-Fetoprotein	- IIIACTIVE	SIS CODE	LONG	DESCRIPTION	1			SHORT	DESCRIPTION	
10460-4 Lactaibumin aipna Ag	0010			a due to vibrio d					d/t vib cholerae	_
10401-2 Alpha-1-Antichymoth	⁷ 0011			a due to vibrio d		or			d/t vib el tor	-
2010 2 111100710	0040			a, unspecified				Cholera I		-
P31755-9. 10462-0 Alpha 1 antitrypsin Ag 10463-8 Amyloid A componen				d fever				Typhoid f		-1
10464-6 Amyloid P component				phoid fever A					oid fever a	-
10465-3 Amyloid P component				phoid fever B					oid fever b	-
10466-1 Anion gap 3	0023			phoid fever C					oid fever c	N.A
	0029			phoid fever, uns	nacified				oid fever NOS	- 6
	0030			nella gastroente					lla enteritis	-1
	0030			nella septicemi					lla septicemia	-1
	0031			zed salmonella		enecified			monella inf NOS	-1
	00320					specilied				-1
	00321			nella meningitis					lla meningitis	-
	_			nella pneumoni	d				lla pneumonia	-1
	00323			nella arthritis	the -				lla arthritis	
	00324			nella osteomye					lla osteomyelitis	
	00329		Other	localized salmo	nella infectio	ns		Local sal	monella inf NEC	



Vocabulary Goals

- ✓ **Domains:** Every Standard Concept belongs to the right Domain
- No duplicates: For every entity exists one Standard Concept
- •Comprehensive: For every Domain exists a complete finite set of Concepts covering all possible entities in this domain
- Hierarchy: All Concepts are connected through a comprehensive hierarchy
- Mapping: For every existing code in a vocabulary there is a map to a Standard Concept or a map to

Condition Concepts

Why are we mapping?

LANGUAGES

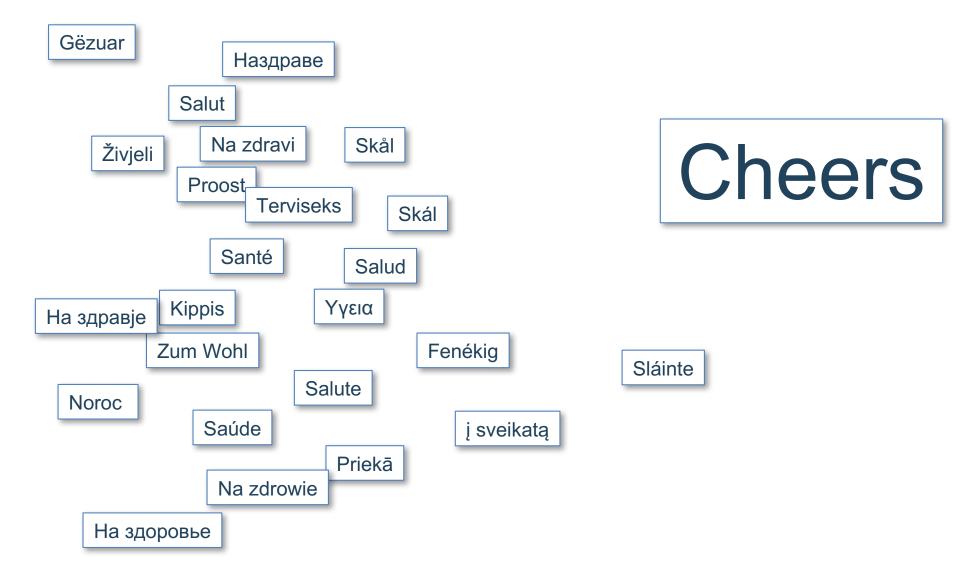
Supporting language learning and linguistic diversity

European Commission > Languages > Policy > Linguistic diversity

Official languages of the EU

What is it?

The European Union has 24 official and working languages. They are:


Bulgarian	French	Maltese
Croatian	German	Polish
Czech	Greek	Portuguese
Danish	Hungarian	Romanian
Dutch	Irish	Slovak
English	Italian	Slovenian
Estonian	Latvian	Spanish
Finnish	Lithuanian	Swedish

What is the Commission doing?

With a permanent staff of 1,750 linguists and 600 support staff, the Commission has one of the largest translation services in the world, bolstered by a further 600 full-time and 3,000 freelance interpreters.

How many different ways do you express one meaning?

Mapping = Translating

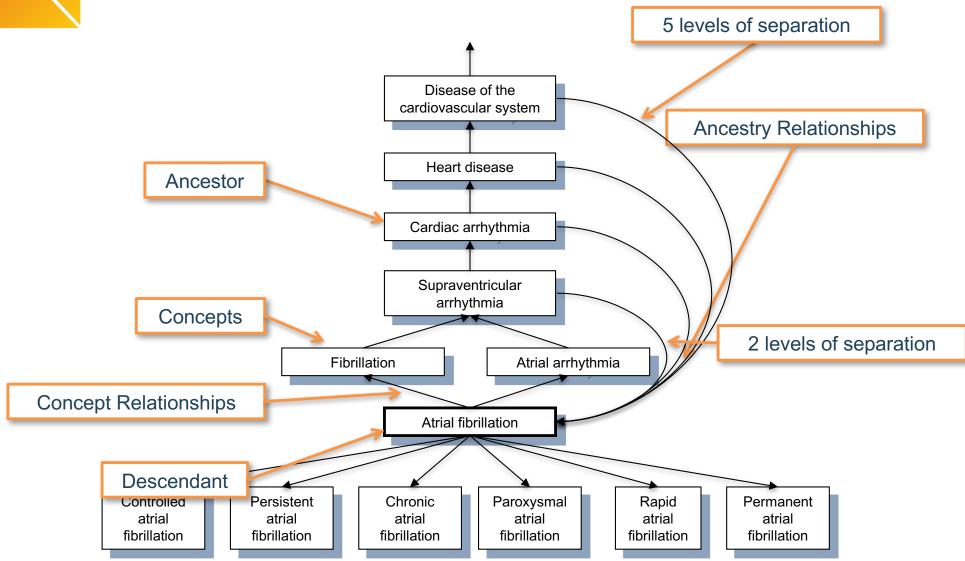
Step 1. Lookup the Source Concept

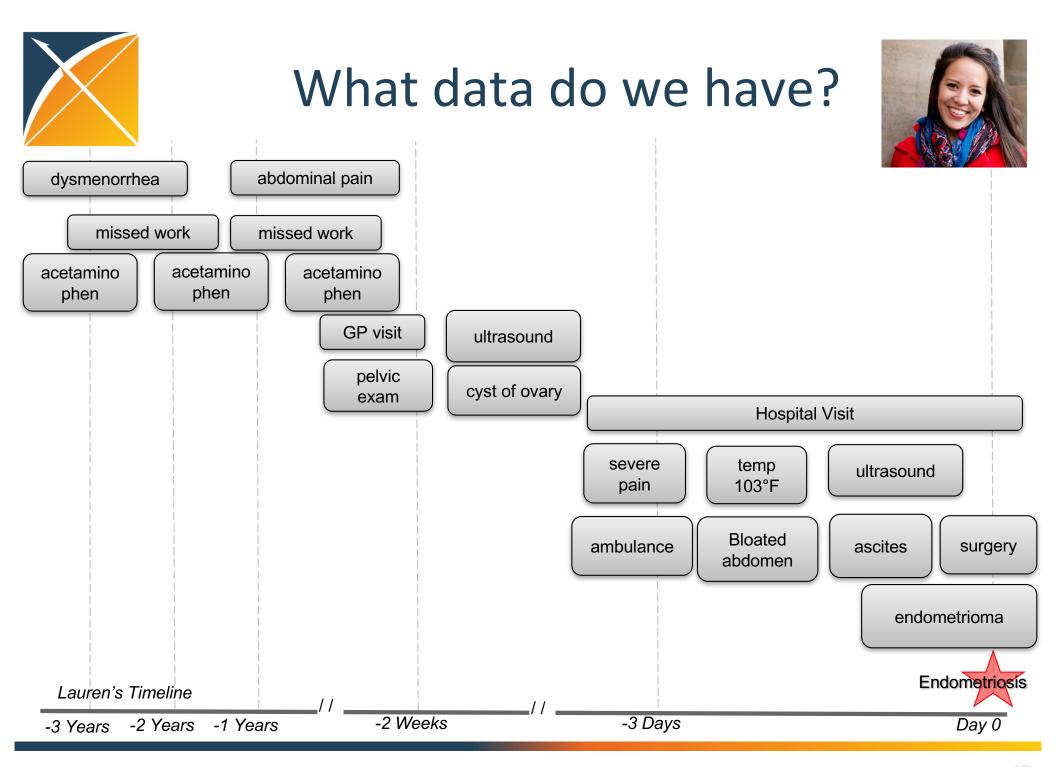
SELECT * FROM concept WHERE concept_code = '427.31';

CONCEPT	CONCEPT_ NAME	DOMAIN	VOCABULARY	CONCEPT_	STANDARD_	CONCEPT_
_ID		_ID	_ID	CLASS_ID	CONCEPT	CODE
<mark>44821957</mark>	Atrial fibrillation	Condition	ICD9CM	5-dig billing code		427.31

Step 2. Translate to Standard

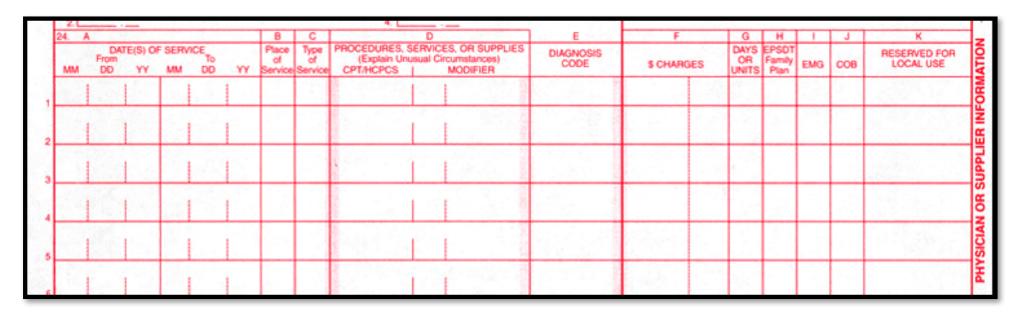
SELECT * FROM concept_relationship WHERE concept_id_1 = 44821957
AND relationship_id = 'Maps to';


CONCEPT	CONCEPT		VALID_START	VALID_END	INVALID
_ID_1	_ID_2	RELATIONSHIP _ID	_DATE	_DATE	_REASON
44821957	313217	Maps to	01-Jan-1970	31-Dec-2099	


Step 3. Check out the translated Concept

SELECT * FROM concept WHERE concept_id = 313217;

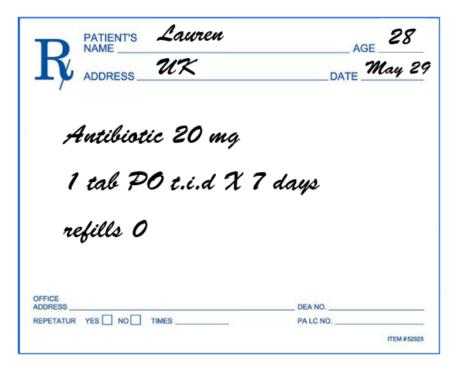
Ancestry Relationships: Higher-Level Relationships



Examples of how Researchers get Lauren's data?

Health Insurance Claim Form (HCFA-1500)

Universal Billing form (UB-92)



Examples of how Researchers get Lauren's data?

Health Insurance Claim Form (HCFA-1500)

Universal Billing form (UB-92)

Prescriptions

Examples of how Researchers get Lauren's data?

Health Insurance Claim Form (HCFA-1500)

Universal Billing form (UB-92)

Prescriptions

Doctors notes

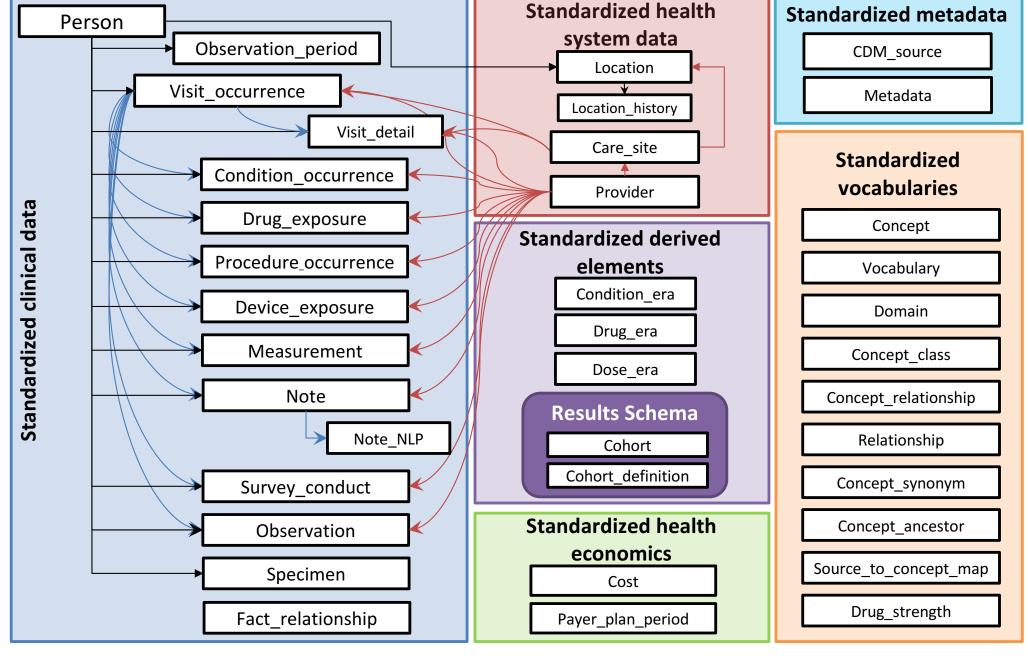
Patient: Lauren

Date of Procedure: 12-March

Surgeon: Dr. Patrick Ryan

Assistant: Dr. Erica Voss

Procedure: Endometrial biopsy


Operative Summary: Endometrial biopsy performed with sterile

technique. Adequate sample.

Presence of endometrial tissues outside the uterus.

CDM Version 6 Key Domains

PERSON

COLUMN	EXAMPLE	
person_id	123456	Lauren's ID
gender_concept_id	8532	Female
year_of_birth	1982	
month_of_birth	NULL	
day_of_birth	NULL	
race_concept_id	8527	White
person_source_value	123456	
gender_source_value	F	
race_source_value	W	

OBSERVATION_PERIOD

COLUMN	EXAMPLE
observation_period_id	1
person_id	123456 <i>Lauren's ID</i>
observation_period_start_date	2000-01-01
observation_period_end_date	2010-12-31

COLUMN	EXAMPLE
observation_period_id	2
person_id	123456 <i>Lauren's ID</i>
observation_periods_start_date	2012-01-01
observation_periods_start_date	2013-12-31

VISIT_OCCURRENCE

COLUMN	EXAMPLE	
visit_occurrence_id	1	
person_id	123456	Lauren's ID
visit_start_date	2008-04-07	
visit_end_date	2008-04-07	
visit_concept_id	9202	Outpatient Visit
visit_source_value	OP	

COLUMN	EXAMPLE	
visit_occurrence_id	2	
person_id	123456	Lauren's ID
visit_start_date	2008-04-21	
visit_end_date	2008-04-26	
visit_concept_id	9201	Inpatient Visit
visit_source_value	IP	

CONDITION_OCCURRENCE

COLUMN	EXAMPLE	
condition_occurrence_id	1	
person_id	123456	Lauren's ID
condition_concept_id	433527	Endometriosis
condtition_start_date	2008-04-24	
condition_type_concept_id	38000183	Inpatient detail - primary
visit_occurrence_id	2	
condition_source_value	6171	ICD9, missing decimal
condition_source_concept_id	44832501	Endometriosis of ovary

DRUG_EXPOSURE

COLUMN	EXAMPLE	
drug_exposure_id	1	
person_id	123456	Lauren's ID
drug_concept_id	40162494	Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Ora
drug_exposure_start_date	2007-02-01	Tablet
drug_exposure_end_date	2007-02-08	Drug_exposure_start_date + days_supply
verbatim_end_date	NULL	
drug_type_concept_id	38000183	Prescription dispensed in
refills	0	pharmacy
quantity	14	
days_supply	7	
drug_source_value	54348001301	NDC 11-digit code
drug_source_concept_id	45904353	Acetaminophen 500 MG / Hydrocodone Bitartrate 5 MG Ora Tablet

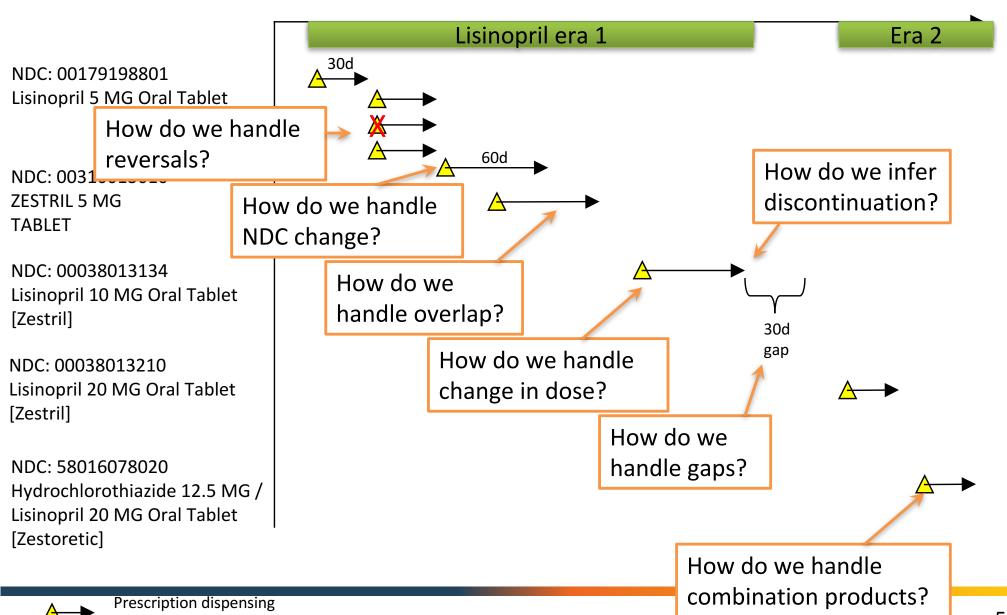
PROCEDURE_OCCURRENCE

COLUMN	EXAMPLE	
procedure_occurrence_id	1	
person_id	123456	Lauren's ID
procedure_concept_id	2211740	Ultrasound, abdominal, real time with image documentation;
procedure_date	2008-04-08	complete
procedure_type_concept_id	38000267	Outpatient detail - 1st position
visit_occurrence_id	1	
procedure_source_value	76700	CPT4
procedure_source_concept_id	2211740	Ultrasound, abdominal, real time with image documentation; complete

MEASUREMENT

COLUMN	EXAMPLE	
measurement_id	1	
person_id	123456	Lauren's ID
measurement_concept_id	3020891	Body temperature
measurement_date	2008-04-21	
measurement_type_concept_id	44818701	From physical examination
value_as_number	103	
unit_concept_id	9289	Degree Fahrenheit
measurement_source_value	8310-5	LOINC
measurement_source_concept_id	3020891	Body temperature

OBSERVATION



COLUMN	EXAMPLE	
observation_id	1	
person_id	123456	Lauren's ID
observation_concept_id	0	No matching concept
observation_date	2006-01-20	
observation_type_concept_id	44814721	Patient reported
value_as_number	8	
value_as_string	Work Hours Mi	ssed
observation_source_value	Work Hours Mi	ssed
observation_source_concept_id	0	No matching concept

Illustrating inferences needed within longitudinal pharmacy claims data for one patient

Person Timeline

CDM Tables Not Covered in Detail

- VISIT_DETAIL
- SPECIMEN
- DEATH
- DEVICE EXPOSURE
- NOTE
- NOTE_NLP
- FACT_RELATIONSHIP
- LOCATION
- CARE_SITE

- PROVIDER
- PAYER_PLAN_PERIOD
- COST
- COHORT
- COHORT_ATTRIBUTES
- CONDITITION_ERA
- DOSE_ERA
- CDM_SOURCE

Standards

- Patients without transaction
- Cleaning dirty data
 - -Patient IDs reused
 - -Bogus code records (e.g. '000')
- How to handle tobacco information

CDM Version Control

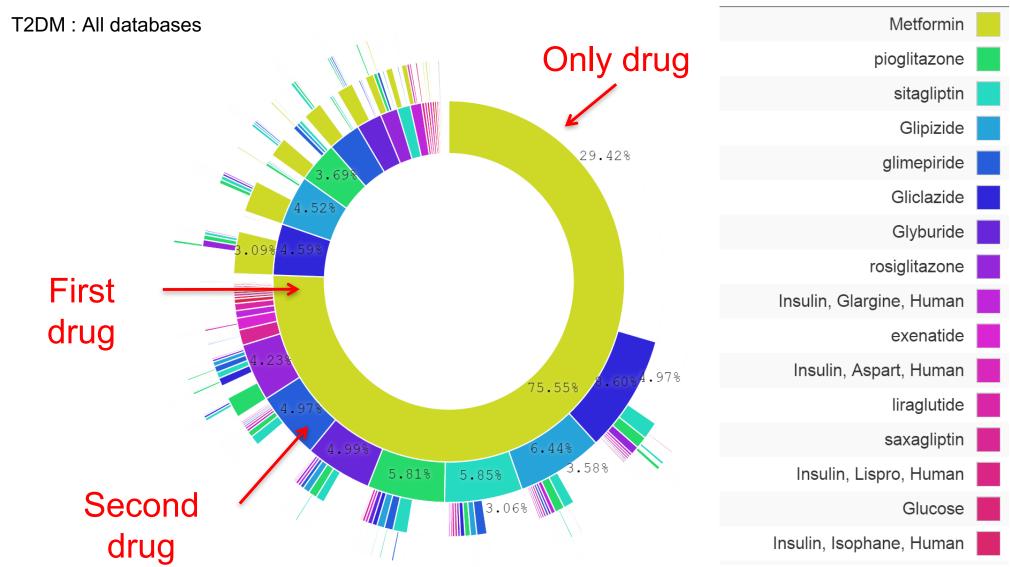
- Working group meets once a month to discuss proposed changes to the CDM
- All CDM documentation, versions, and proposals located on GitHub
 - -https://github.com/OHDSI/CommonDataModel
 - -Proposals tracked and discussed as GitHub issues
- Meeting information can be found on the working group wiki page
- Please contact Clair Blacketer (<u>mblacke@its.jnj.com</u>) for more information

OHDSI generates Evidence

Proceedings of the National Academy of Sciences, 2016

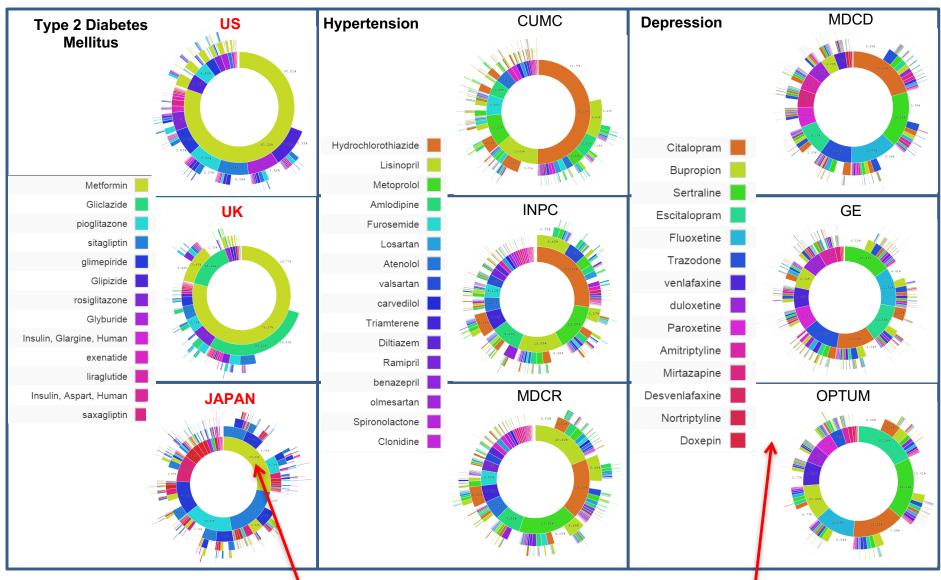
Characterizing treatment pathways at scale using the OHDSI network

George Hripcsak^{a,b,c,1}, Patrick B. Ryan^{c,d}, Jon D. Duke^{c,e}, Nigam H. Shah^{c,f}, Rae Woong Park^{c,g}, Vojtech Huser^{c,h}, Marc A. Suchard^{c,i,j,k}, Martijn J. Schuemie^{c,d}, Frank J. DeFalco^{c,d}, Adler Perotte^{a,c}, Juan M. Banda^{c,f}, Christian G. Reich^{c,f}, Lisa M. Schilling^{c,m}, Michael E. Matheny^{c,n,o}, Daniella Meeker^{c,p,q}, Nicole Pratt^{c,r}, and David Madigan^{c,s}

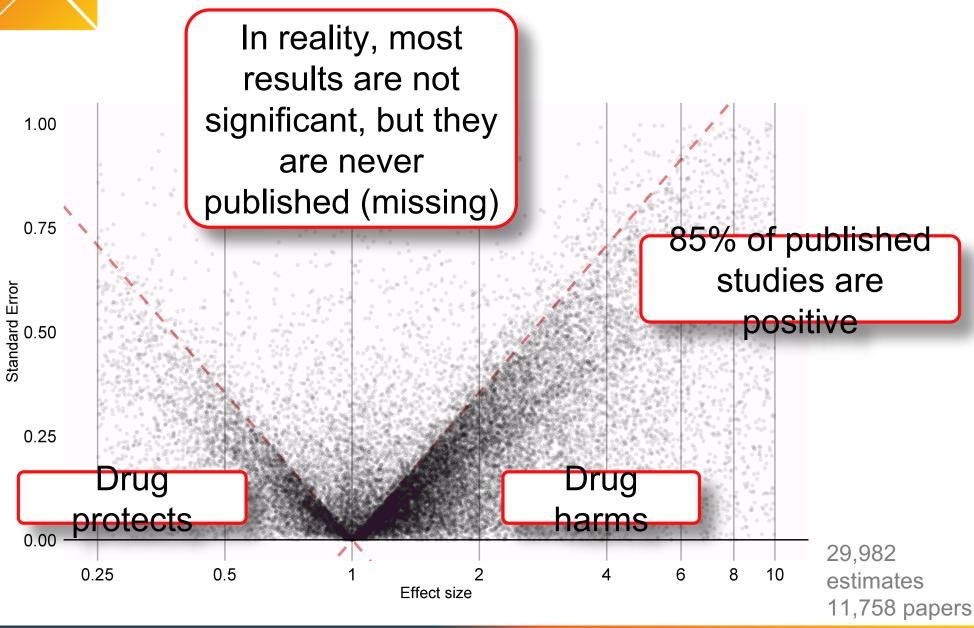

Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032; "Medical Informatics Services, NewYork-Presbyterian Hospital, New York, NY 10032; "Observational Health Data Sciences and Informatics, New York, NY 10032; "Epidemiology Analytics, Janssen Research and Development, Titusville, NJ 08560; "Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, IN 46205; "Center for Biomedical Informatics Research, Stanford University, CA 94305; "Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea, 443-380; "Lister Hill National Center for Biomedical Communications (National Library of Medicine), National Institutes of Health, Bethesda, MD 20894; "Department of Biomathematics, University of California, Los Angeles, CA 90095; "Department of Biostatistics, University of California, Los Angeles, CA 90095; "Department of Biomedical Informatics, University of California, Los Angeles, CA 90095; "Real World Evidence Solutions, IMS Health, Burlington, MA 01809; "Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; "Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37212; "Geriatric Research, Education and Clinical Center, VA Tennessee Valley Healthcare System, Nashville, TN 37212; "Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089; "Department of Pediatrics, University of Southern California, Los Angeles, CA 90089; "Department of Pediatrics, University of Southern California, Los Angeles, CA 90089; "Department of Pediatrics, University of Southern California, Los Angeles, CA 90089; "Department of Pediatrics, University of Southern California, Los Angeles, CA 90089; "Department of Pediatrics, University of Southern California, Los Angeles, CA 90089; "Department of Pediatrics, University of Southern California, Los Angeles, CA 90089; "Department of Pediatrics, University of Southern California, Los Angeles, CA 90089; "Department o

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved April 5, 2016 (received for review June 14, 2015)

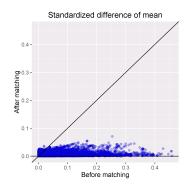
Observational research promises to complement experimental research by providing large, diverse populations that would be infeasible for an experiment. Observational research can test its own clinical hypotheses, and observational studies also can contribute to the design of experiments and inform the generalizability of experimental research. Understanding the diversity of populations Without sufficiently broad databases available in the first stage, randomized trials are designed without explicit knowledge of actual disease status and treatment practice. Literature reviews are restricted to the population choices of previous investigations, and pilot studies usually are limited in scope. By exploiting the Clinical Trials gov national trial registry (9) and electronic health

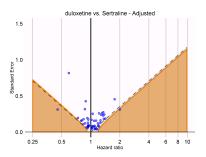


Treatment pathways for diabetes

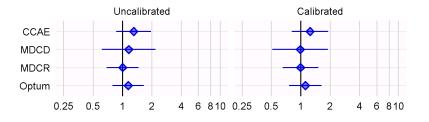


Heterogeneity in treatments


The current literature is severely biased



OHDSI's reproducible research


- 1. Address confounding that is measured
 - Propensity stratification

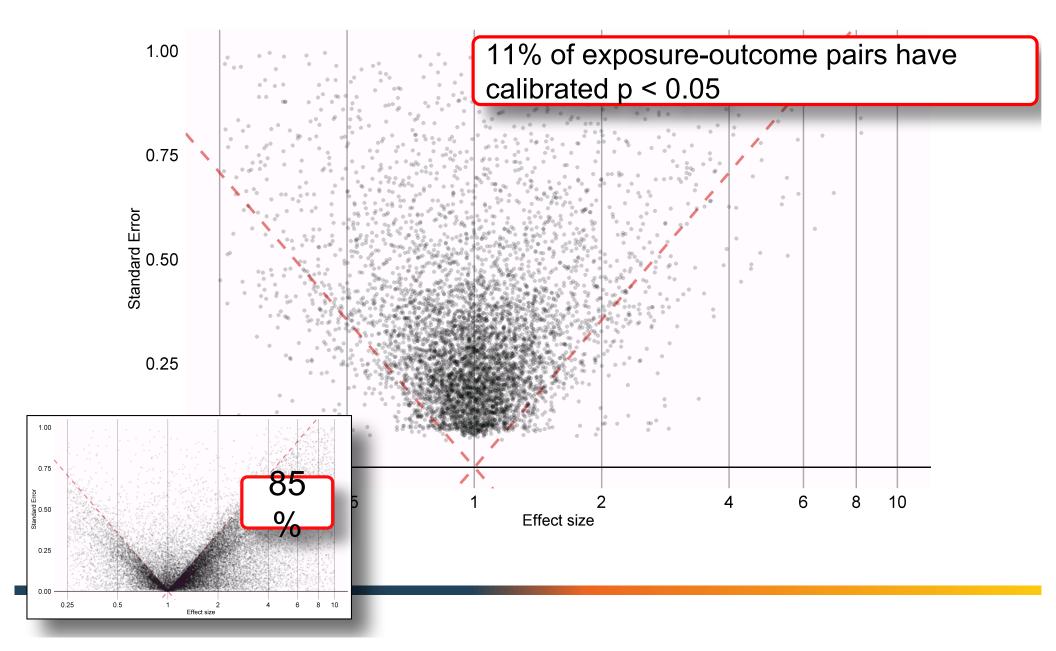
- 2. Address unmeasured confounding
 - Negative controls

- 3. Multiple databases, locations, practice types
 - Exploit international OHDSI network
- 4. Open: publish all

5. Run 17,000 studies at once

Duloxetine vs. Sertraline for these 22 outcomes:

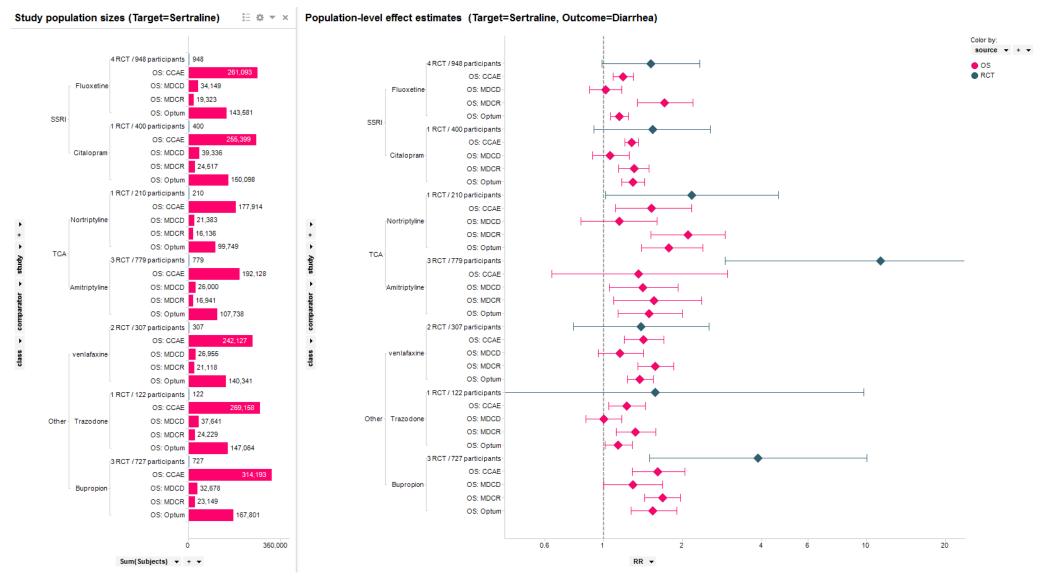
Acute liver injury	Hypotension
Acute myocardial infarction	Hypothyroidism
Alopecia	Insomnia
Constipation	Nausea
Decreased libido	Open-angle glaucoma
Delirium	Seizure
Diarrhea	Stroke
Fracture	Suicide and suicidal ideation
Gastrointestinal hemorrhage	Tinnitus
Hyperprolactinemia	Ventricular arrhythmia and sudden cardiac death
Hyponatremia	Vertigo



Many treatments at once

Type	Class	Treatment
Drug	Atypical	Bupropion
Drug	Atypical	Mirtazapine
		Electroconvulsive
Procedure	ECT	therapy
	Psychotherap	
Procedure	у	Psychotherapy
Drug	SARI	Trazodone
Drug	SNRI	Desvenlafaxine
Drug	SNRI	duloxetine
Drug	SNRI	venlafaxine
Drug	SSRI	Citalopram
Drug	SSRI	Escitalopram
Drug	SSRI	Fluoxetine
Drug	SSRI	Paroxetine
Drug	SSRI	Sertraline
Drug	SSRI	vilazodone
Drug	TCA	Amitriptyline
Drua	TCA	Doxenin

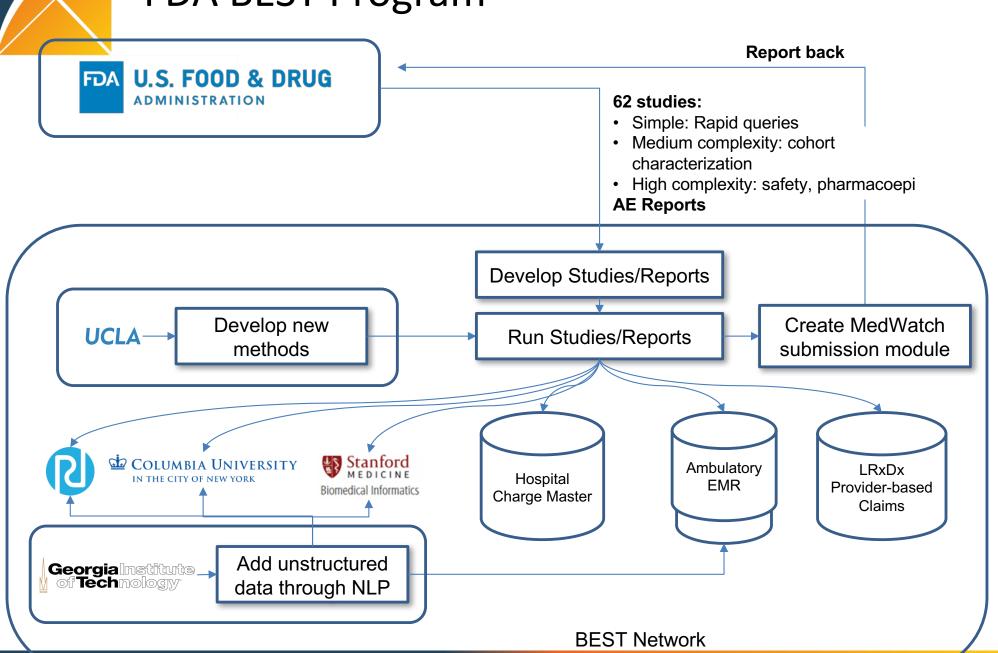
OHDSI's results: less bias



Benefit and Harm of 2ndgeneration Antidepressants

			$\overline{}$	$\overline{}$	$\overline{}$						$\overline{}$				
	Cital	Sparr Escie	Jopan	etine Paro	etine Sertif	dine Vilate	odone	and axine	etine	afatine Amit	Dote:	din Nort	Bupt	opion with	tapine Tat
Outcome	SSRI					SNRI			(*	TCA			Other Drugs		
Acute liver injury	Advers	Advers	Advers	Advers	Reacti		Overd	Warnin	Overd	Advers		Precau	Reacti	Reacti	
Acute myocardial infarction	Advers	Advers		Advers	Reacti		Reacti	Reacti		Advers		Advers	Reacti	Reacti	Reacti
Alopecia	Advers	Advers	Advers	Advers	Reacti		Reacti		Reacti	Advers	Advers	Advers	Reacti	Reacti	Reacti
Constipation	Advers	Advers	Advers	Advers	Reacti		Reacti	Reacti	Reacti	Precau	Advers	Advers	Reacti	Reacti	Reacti
Decreased libido	Advers	Advers	Advers	Advers	Reacti	Reacti	Reacti	Reacti	Reacti	Advers	Advers	Advers	Reacti	Reacti	Reacti
Delirium	Advers	Advers	Overd	Advers	Overd	Warnin	Warnin	Warnin	Reacti	Precau		Warnin	Reacti	Reacti	
Diarrhea	Advers	Advers	Advers	Advers	Reacti	Reacti	Reacti	Reacti	Reacti	Advers	Advers	Advers	Reacti	Reacti	Reacti
Fracture				Precau				Warnin						Reacti	
Gastrointestinal hemhorrage	Advers		Warnin	Precau	Precau	Warnin	Warnin	Warnin	Warnin				Reacti		Warnin
Hyperprolactinemia	Advers	Advers	Advers	Advers	Reacti		Reacti	Reacti	Reacti						
Hyponatreamia	Precau	Warnin	Warnin	Precau	Precau	Warnin	Warnin	Warnin	Warnin					Precau	Warnin
Hypotension	Advers	Advers	Advers	Advers	Reacti		Reacti	Warnin	Reacti	Advers	Advers	Advers	Reacti	Reacti	Warnin
Hypothyroidism	Advers			Advers	Reacti			Reacti						Reacti	
Insomnia	Advers	Advers	5.1	Advers	Reacti	Reacti	Reacti	Reacti	Reacti	Advers	Precau	Warnin	Reacti	Reacti	Reacti
Nausea	Advers	Advers	Advers	Advers	Reacti	Reacti	Reacti	Reacti	Reacti	Advers	Advers	Advers	Reacti	Reacti	Reacti
Open-angle glaucoma	Warnin	Warnin	Warnin	Warnin	Warnin	Warnin	Warnin	Warnin	Warnin	Precau		Warnin	Warnin	Warnin	Warnin
Seizure	Precau	Warnin	Warnin	Precau	Precau	Warnin	Warnin	Warnin	Warnin	Advers	Advers	Advers	Warnin	Precau	Warnin
Stroke	Advers	Advers	Advers	Advers	Reacti					Advers		Advers	Reacti		Reacti
Suicide and suicidal thoughts	Boxed		Boxed	Boxed	Boxed	Boxed	Boxed	Boxed	Boxed	Boxed	Boxed	Boxed	Boxed	Boxed	Boxed
Tinnitus	Advers	Advers		Advers	Reacti		Reacti	Reacti	Reacti	Advers	Advers	Advers	Reacti	Reacti	Reacti
Ventricular arrythmia	Warnin	Advers	Warnin	Advers	Reacti		Reacti	Reacti	Reacti	Advers	Advers	Advers		Warnin	Warnin
Vertigo	Advers	Advers	Overd	Advers	Reacti		Reacti	Reacti	Overd				Reacti	Reacti	Reacti

Comparing RCT and observational results for effects of sertraline on diarrhea



Comparative effectiveness hypotheses from Gartleher et al

- Venlafaxine has higher risk of nausea than SSRI
- No difference in nausea between duloxetine and paroxetine or fluoxetine
- Sertraline has higher risk of diarrhea than comparators
- Paroxetine has higher rate of sexual dysfunction than fluoxetine and sertraline.
- •Bupropion has lower incidence of sexual dysfunction than fluoxetine, paroxetine, and sertraline.
- Trazodone increased risk of somnolence

FDA BEST Program

Summary

- OHDSI is a public world-wide collaborative.
 Everybody can participate. It's free. There is no catch.
- You don't have to give the data away, but you need to standardize the data. The standard is strict. No shortcuts!
- When you do that, you get tools, methods, and a lot of new colleagues. People in the OHDSI community are nice and competent.
- You can do meaningful and scientifically high-quality network research

Join the Journey

http://ohdsi.org