architectures for clinical data management W. Scott Campbell PhD MBA James R. Campbell MD Alternative database

Omaha, NE **University of Nebraska Medical Center Nebraska Medicine**

SERIOUS MEDICINE. EXTRAORDINARY CARE

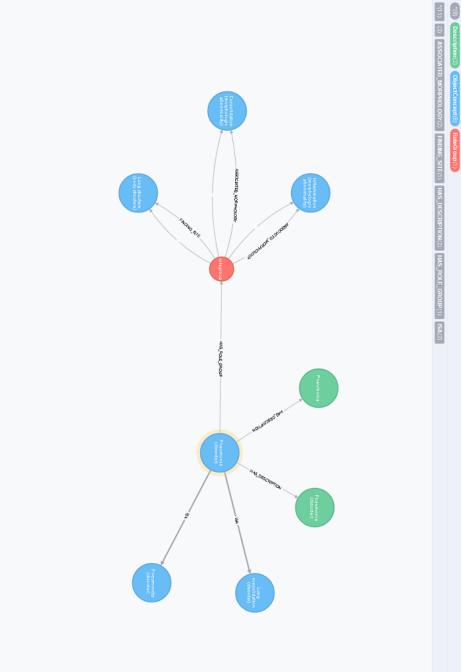
Overview

- Employment of graph database technology for SNOMED CT in context of clinical use
- Initial experiments and results
- Current Use
- Future work

Initial Use Case – circa 2015

- Instantiate a data base with numerous, real-time postcoordinated expressions of surgical pathology findings.
- Relational database designs resulted in HUGE join tables
- Suggested a use case for a triple-store database (RDF?)
- I Investigation of NoSQL options suggested graphDB's
- Graph databases:
- Class of NoSQL
- Emphasize connectedness of data vs. rows/columns of data
- Open world vs. closed world
- Flexible
- Transactionally ACID properties
- SNOMED CT is a directed, acyclic graph
- Used Neo4j (San Mateo, CA), open sourced, java based

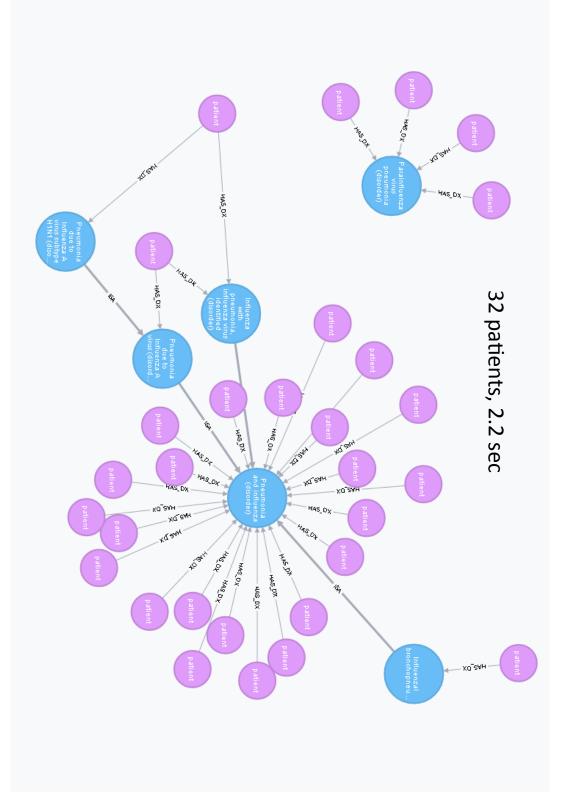
Approach


- Graphs consist of Nodes and Relationships (edges) that connect Nodes
- Nodes and Edges can have properties ("Property Graph")
- Used Snapshot, RF2 release of SNOMED CT International release (classified version)
- All SNOMED CT concepts represented as nodes
- All RF2 metadata represented as properties of nodes
- Active, module ID, definition status ID, effective time
- All SNOMED CT attributes represented as edges

 RF2 Metadata as properties
- All names set as nodes with relationship to SNOMED CT expression node
- Result: A graph database with 100% of SNOMED CT content
- Fast! Transitive Closure Calculation time < 60 sec on laptop

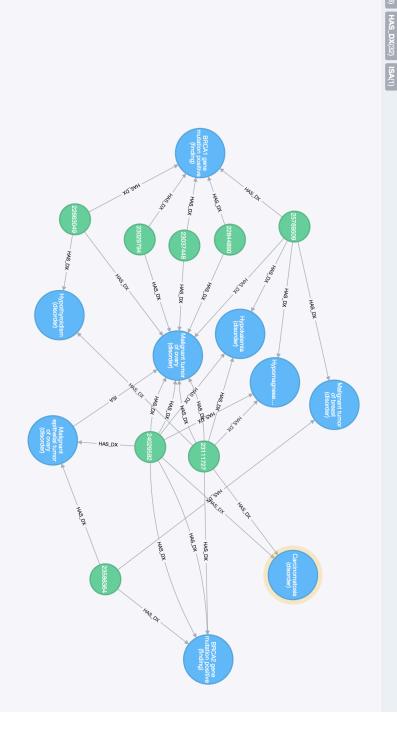
Example: Pneumonia

 $\$ match p=(a:0bjectConcept(sctld:233604007))-[*0..1]->(b) return p


mccm sid=176250 idt/233804007 sotist/233804007 FSNt Pneumonia (disorder) modulelet/s00000000207000 effectiveTimer/20100131 notetyper concept definitionStatusIst/s0000000000074000 activer1

Add Patient Data

- Import patient records from de-identified clinical data warehouse
- Approximately 465,000 patients
- Import patient problem lists (All SNOMED CT encoded)
- Up to 20 years of data
- 2,770,000 diagnoses in total
- Properties:
- Date of diagnosis (start and end dates)
- Active, inactive or deleted status
- Result
- Patient identification by SNOMED CT codes/subsumption same as RDBMS based clinical data warehouse.
- Queries were fast! Desktop on par with enterprise class server.
- I Unintended finding: Queries of negation, disjunction, depth



Example: Find all patients with Pneumonia due to some influenza virus or some parainfluenza virus

Queries of undefined depth

Find all patients with positive BRCA1 or BRCA2 gene mutation who have an

How about Historicity?

- table FAST Graph database calculation of transitive closure
- and two release dates? multiple years AND a Delta TC table between Can the database produce TC tables for
- effects of terminology updates on Beneficial for SNOMED CT sites to assess of Implementations

Result

- Following methods used previously for a single release
- Added property to maintain historical representations of SNOMED CT concepts and relationships
- Instantiated graph DB with classified, full RF2 release – 6 GB, ~425K concepts and ~6.9M relationships
- TC calculations created using the graph model by year match TC tables created for any single release year.
- Creation of delta TC table between any two years < 4
- TC table year 1 < 30 sec</p>
- TC table year 2 < 30 sec</p>
- Delta TC table calculation and write to file 2.5

What about patient data?

- Added same patient data used in Snapshot graph DB
- 465,000 patients
- ~2.77 million associated problems/clinical findings (20140901 US extension)
- GraphDB build on 20150901 US extension)
- concept) Queried all SNOMED CT expressions with existing relationship to any patient AND Active status = '0' (Inactive
- Return 79 inactive concepts
- Affected 6134 distinct patients
- All concept changes due to changes in 20150131 International release

ID all patients with active diagnosis linked to inactive SNOMED CT concept

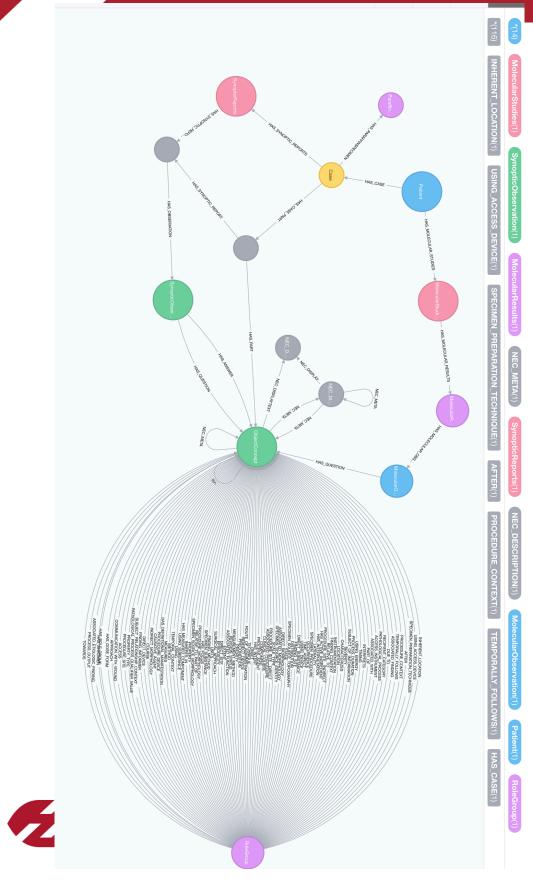
429081000124107 Hist	395657006 Palli	44008002 Som	440181000 App	367530008 Spor	312403005 Legi	431347008 Lipo	71275003 Pseu	601000119109 Hist	91340006 Extri	23346002 Sunt	SCTID	
History of extracorporeal membrane oxygenation (situation)	Pallister-Killian syndrome (disorder)	Somatotropin deficiency (disorder)	Apparent life-threatening event (finding)	Spondyloepiphyseal dysplasia congenita (disorder)	Legionnaire's disease (disorder)	Lipodystrophy associated with Human immunodeficiency virus infection (disorder)	Pseudoprimary aldosteronism (disorder)	History of bee sting allergy (situation)	Extrinsic asthma with status asthmaticus (disorder)	Sunburn (disorder)	Fully Specified Name	
15	1	131	19	ω	6	4	17	1	6	7	Patients	

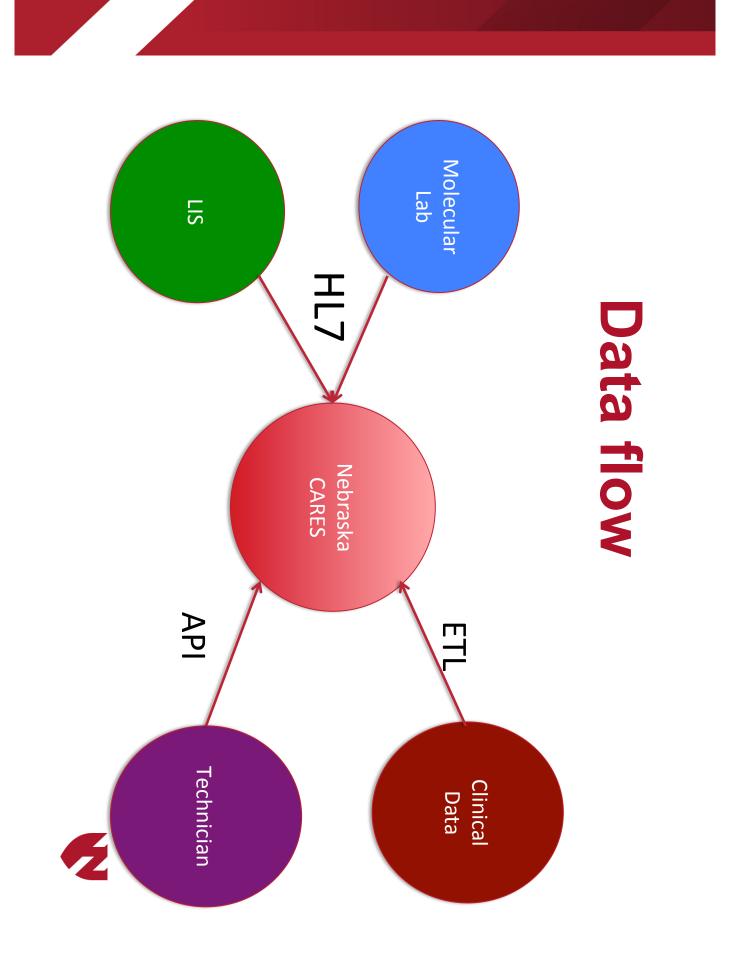
What we learned

- concept model at core of database Information model and design places semantic terminology/
- as an afterthought Patient data is built upon the semantics initially vs. terminology
- Queries start with the full semantic model (SNOMED CT)
- Real-time subsumption queries without logical abstraction (transitive closure
- Semantic queries using defining attribute edges vs. ISA-only at run time
- Persistent and query-able representation of data over time in BOTH current and past SNOMED CT representations

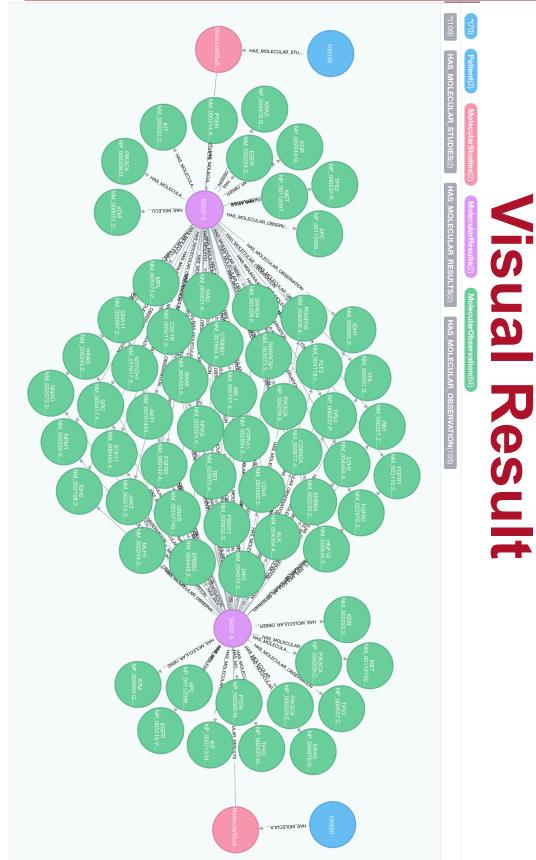
Current Use Case (Nebraska CARES)

- Deploy graph model with SNOMED semantic core
- Cancer registry integrated into operational ecosystem
- Biorepository and inventory management
- Expose to general users for de-identified exploration of tissue availability by characteristics




Information modeling

- Nodes used for SNOMED CT concepts
- Edges used for SNOMED CT attributes and relationships
- Nodes used for:
- Patients, Cases, Tissue Specimens, synoptic cancer reporting values, sequence results
- Edges for all type of relationships
- Sparseness of data (i.e. normal form)



Query Sample

- All patients with Colorectal Cancer
- Histology type of Mucinous carcinoma
- All NGS results in 50 gene panel Those that are in common
- Those that are different

Long term objectives

- Goal: create entire clinical data warehouse using the graph mode
- Compare performance to existing RDBMS models
- Desired benefits
- Queries of undefined depth (tractable)?
- Pattern identification
- Health and disease are patterns
- New relationship identification correlation/causation

Challenges and Learnings

- Information modeling
- This is not your parents' RDBMS
- Requires changes to modeling
- Sparseness of data
- Edges are key
- It's in the Java
- Neo4J (i.e., Neo for Java)
- Plug-ins access graph algorithms not directly available in Cypher

References

- V 1. Lee D, Cornet R, Lau F, de Keizer N. A survey of SNOMED CT implementations. J Biomed Inform. 2013 Feb;46(1):87-96.
- V 2. Campbell WS, Campbell JR, West WW, McClay JC, Hinrichs SH. Semantic analysis of SNOMED CT for a post-coordinated database of histopathology findings. J Am Med Inform Assoc. 2014 Sep;21(5):885-92.
- V 3. Campbell WS, Pedersen J, McClay JC, Rao P, Bastola D, Campbell JR. An alternative database approach for management of SNOMED CT and improved patient data queries. J Biomed Inform. 2015 Aug 21.
- V 4. Campbell JR, Campbell WS, Hickman H, Pedersen J, McClay J. Employing complex polyhierarchical ontologies and promoting interoperability of i2b2 data systems. [Accepted Proc AMIA Symp. 2015]

W. Scott Campbell wcampbel@unmc.edu

James R. Campbell campbell@unmc.edu

Questions?

SERIOUS MEDICINE. EXTRAORDINARY CARE.

