

SNOMED CT Ontologies for Clinical Value Symposium London, UK April 12, 2018

The role of terminologies in health data analytics through common data models

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

U.S. National Library of Medicine

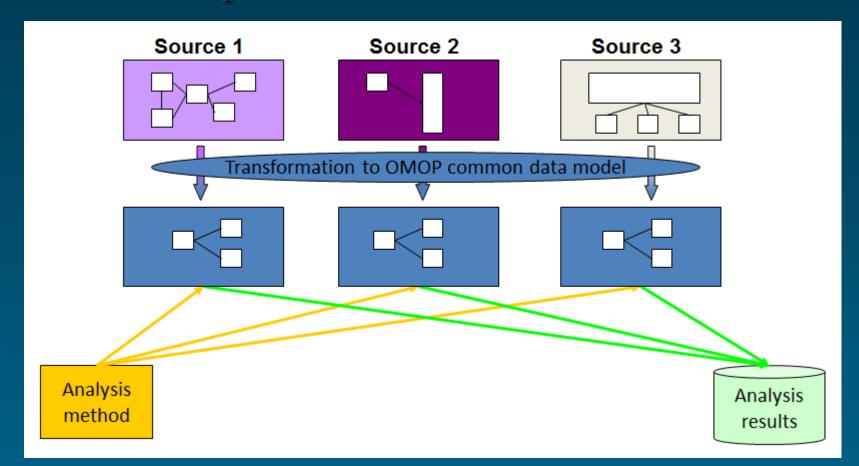
Disclaimer

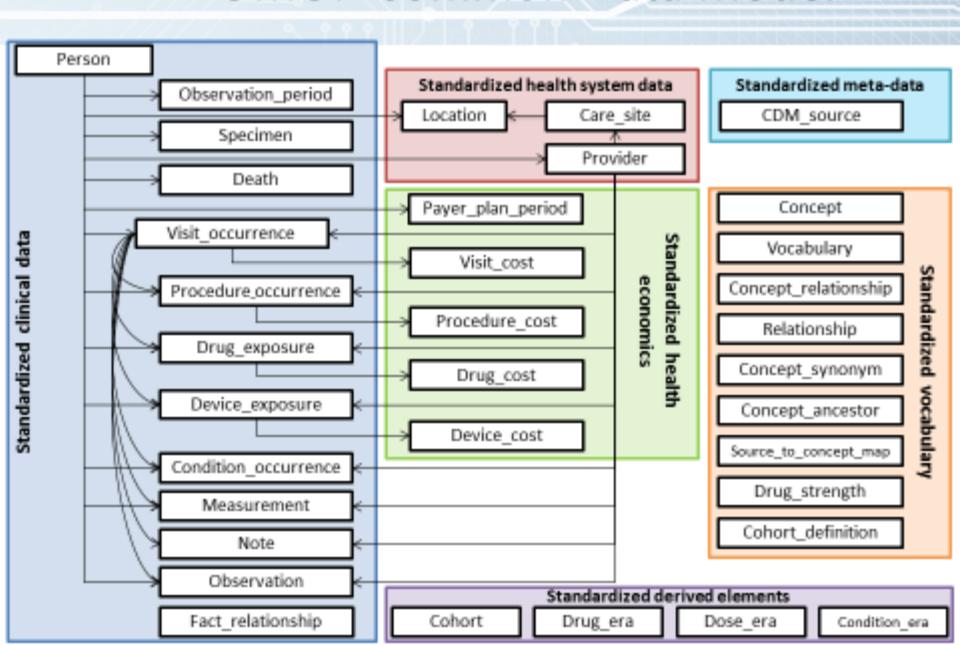
The views and opinions expressed do not necessarily state or reflect those of the U.S. Government, and they may not be used for advertising or product endorsement purposes.

Outline

- ◆ The context of health data analytics
 - Data models
 - Terminology integration
- Observational Health Data Sciences and Informatics (OHDSI)

"Common" data models


- ◆ OMOP
- ◆ PCORnet
- Sentinel
- ◆ CDISC



OMOP

 OMOP – Observational Medical Outcomes Partnership

OMOP Common Data Model

- Standardized Clinical Data Tables
 - PERSON
 - OBSERVATION_PERIOD
 - SPECIMEN
 - DEATH
 - VISIT_OCCURRENCE
 - PROCEDURE OCCURRENCE
 - DRUG_EXPOSURE
 - DEVICE EXPOSURE
 - CONDITION_OCCURRENCE
 - MEASUREMENT
 - NOTE
 - NOTE_NLP (V5 5.2)
 - OBSERVATION
 - FACT RELATIONSHIP
- Standardized Health System Data Tables
 - LOCATION
 - CARE SITE
 - PROVIDER
- Standardized Health Economics Data Tables
 - PAYER PLAN PERIOD
 - COST (V5.0.1)
 - VISIT_COST removed
 - PROCEDURE_COST removed
 - DRUG COST removed
 - DEVICE COST removed
- Standardized Derived Elements
 - COHORT
 - COHORT_ATTRIBUTE
 - DRUG ERA
 - DOSE_ERA
 - CONDITION ERA

- Standardized Vocabularies
 - CONCEPT
 - VOCABULARY
 - DOMAIN
 - CONCEPT CLASS
 - CONCEPT_RELATIONSHIP
 - RELATIONSHIP
 - CONCEPT SYNONYM
 - CONCEPT_ANCESTOR
 - SOURCE_TO_CONCEPT_MAP
 - DRUG_STRENGTH
 - COHORT_DEFINITION
 - ATTRIBUTE_DEFINITION
- Standardized meta-data
 - CDM_SOURCE

i2b2

- ◆ i2b2 Informatics for Integrating Biology & the Bedside
- Originally developed by the i2b2 National Center for Biomedical Computing (2004-2013)
 - Now i2b2 tranSMART Foundation
- Platform to support translational research
- Widely adopted worldwide

i2b2 data model – original "star schema"

i2b2 Star Schema patient dimension PK patient num INTEGER VARCHAR(10) vital status cd birth date DATETIME visit dimension DATETIME death date INTEGER encounter num CHAR(10) sex cd INTEGER patient num age_in_years_num |INTEGER language_cd VARCHAR(100) inout od VARCHAR(10) VARCHAR(100) race od VARCHAR(100) location cd VARCHAR(100) marital status od VARCHAR(700) location path religion cd VARCHAR(100) start date DATETIME zip cd VARCHAR(20) end date DATETIME statecityzip path VARCHAR(200) visit blob TEXT(10) patient blob TEXT(10) observation fact INTEGER PK encounter num PK concept_cd VARCHAR(20) VARCHAR(20) provider_id start_date DATETIME modifier cd CHAR(1) patient num INTEGER valtype cd CHAR(1) tval char VARCHAR(50) DECIMAL(10.2) nval num valueflag cd CHAR(1) DECIMAL(10,2) quantity num units od VARCHAR(100) end Date DATETIME location cd TEXT(100) confidence num VARCHAR(100) observation blob | TEXT(10) concept dimension provider dimension VARCHAR(800) PK concept_path VARCHAR(700) PK provider path VARCHAR(20) VARCHAR(20) concept cd provider id name char VARCHAR(2000) name char VARCHAR(2000) TEXT(10) concept blob provider blob TEXT(10)

List

i2b2-OMOP convergence

◆ i2b2 on OMOP

 Supports query formulation against an OMOPcompliant data source through i2b2 tools

PCORnet

- PCORnet National Patient-Centered Clinical Research Network
- ◆ Initiative of the Patient-Centered Outcomes Research Institute (PCORI)
 - Funded through the Patient Protection and Affordable Care Act of 2010
- "designed to make it faster, easier, and less costly to conduct clinical research"
- Made up of
 - 13 Clinical Data Research Networks (CDRNs)
 - 20 Patient-Powered Research Networks (PPRNs)

DEMOGRAPHIC

PATID
BIRTH_DATE
BIRTH_TIME
SEX
HISPANIC
RACE
BIOBANK_FLAG

Fundamental basis

ENROLLMENT

PATID
ENR_START_DATE
ENR_END_DATE
CHART
ENR_BASIS

DISPENSING

DISPENSINGID PATID

PRESCRIBINGID (optional)

DISPENSE_DATE NDC

DISPENSE_SUP DISPENSE_AMT

DEATH

PATID
DEATH_DATE
DEATH_DATE_IMPUTE
DEATH_SOURCE

DEATH_MATCH_CONFIDENCE

DEATH_CONDITION

PATID
DEATH_CAUSE
DEATH_CAUSE_CODE
DEATH_CAUSE_TYPE
DEATH_CAUSE_SOURCE
DEATH_CAUSE_CONFIDENCE

Data captured from processes associated with healthcare delivery

PCORnet Common Data Model v3.0

New to v3.0

VITAL

VITALID

PATID ENCOUNTERID (optional)

MEASURE_DATE MEASURE TIME

VITAL_SOURCE

HT WT

DIASTOLIC SYSTOLIC

ORIGINAL_BMI

BP POSITION SMOKING

TOBACCO

TOBACCO_TYPE

CONDITION

CONDITIONID

PATID

ENCOUNTERID (optional) REPORT_DATE

RESOLVE DATE

ONSET_DATE

CONDITION STATUS

CONDITION TYPE

CONDITION_TYPE CONDITION_SOURCE

PRO_CM

PRO CM ID

PATID

ENCOUNTERID (optional)

PRO_ITEM

PRO_LOINC PRO_DATE

PRO_TIME

PRO RESPONSE

PRO_METHOD

PRO_MODE PRO_CAT

Data captured within multiple contexts: healthcare delivery,

registry activity, or directly from patients

ENCOUNTER

ENCOUNTERID

PATID

ADMIT_DATE

ADMIT_TIME

DISCHARGE_DATE DISCHARGE TIME

PROVIDERID

FACILITY_LOCATION

ENC_TYPE FACILITYID

DISCHARGE_DISPOSITION

DISCHARGE_STATUS

DRG

DRG_TYPE ADMITTING_SOURCE

DIAGNOSIS

DIAGNOSISID

PATID

ENCOUNTERID

ENC_TYPE (replicated)
ADMIT_DATE (replicated)
PROVIDERID (replicated)

DX

DX_TYPE

DX_SOURCE PDX

PROCEDURES

PROCEDURESID

PATID

ENCOUNTERID

ENC_TYPE (replicated)
ADMIT_DATE (replicated)
PROVIDERID (replicated)

PX_DATE

PX PX TYPE

PX_SOURCE

LAB_RESULT_CM

LAB RESULT CM ID

PATID

ENCOUNTERID (optional)

LAB_NAME

SPECIMEN SOURCE

LAB LOINC PRIORITY

RESULT LOC

LAB PX

LAB PX TYPE

LAB_ORDER_DATE

SPECIMEN_DATE

SPECIMEN_TIME

RESULT_DATE

RESULT_TIME

RESULT_QUAL

RESULT_NUM

RESULT_MODIFIER

RESULT_UNIT

NORM_RANGE_LOW

NORM_MODIFIER_LOW

NORM_RANGE_HIGH NORM MODIFIER HIGH

ABN_IND

PRESCRIBING

PRESCRIBINGID

PATID

ENCOUNTERID (optional)

RX_PROVIDERID

RX ORDER DATE

RX ORDER TIME

RX_START_DATE RX_END_DATE

RX_QUANTITY RX_REFILLS

RX DAYS SUPPLY

RX_FREQUENCY

RX_BASIS RXNORM_CUI

Data captured from healthcare delivery, direct encounter basis

PCORNET_TRIAL

PATID TRIALID

PARTICIPANTID

TRIAL_SITEID

TRIAL_ENROLL_DATE
TRIAL_END_DATE

TRIAL_WITHDRAW_DATE TRIAL_INVITE_CODE

Associations with PCORnet clinical trials

HARVEST

NETWORKID

NETWORK NAME DATAMARTID DATAMART_NAME DATAMART PLATFORM CDM VERSION DATAMART CLAIMS DATAMART EHR BIRTH DATE MGMT ENR START DATE MGMT ENR END DATE MGMT ADMIT_DATE_MGMT DISCHARGE_DATE_MGMT PX DATE MGMT RX ORDER DATE MGMT RX START DATE MGMT RX END DATE MGMT DISPENSE DATE MGMT LAB_ORDER_DATE_MGMT SPECIMEN DATE MGMT RESULT DATE MGMT MEASURE_DATE_MGMT ONSET DATE MGMT REPORT DATE MGMT RESOLVE DATE MGMT PRO DATE MGMT REFRESH DEMOGRAPHIC DATE REFRESH_ENROLLMENT_DATE REFRESH ENCOUNTER DATE REFRESH DIAGNOSIS DATE REFRESH PROCEDURES DATE REFRESH VITAL DATE REFRESH DISPENSING DATE REFRESH LAB RESULT CM DATE REFRESH CONDITION DATE REFRESH PRO CM DATE REFRESH PRESCRIBING DATE REFRESH_PCORNET_TRIAL_DATE

Process-related data

REFRESH DEATH DATE

Bold font indicates fields that cannot be null due to primary key definitions or record-level constraints.

Sentinel

- Initiative of the Food and Drug Administration (FDA)
- ◆ Effort to create a national electronic system for monitoring the performance of FDA-regulated medical products (drugs, vaccines, and other biologics)
- ◆ Develop a system to obtain information from existing electronic health care data from multiple sources to assess the safety of approved medical products
- ◆ Distributed dataset reached 100 lives in 2011

Sentinel Common Data Model

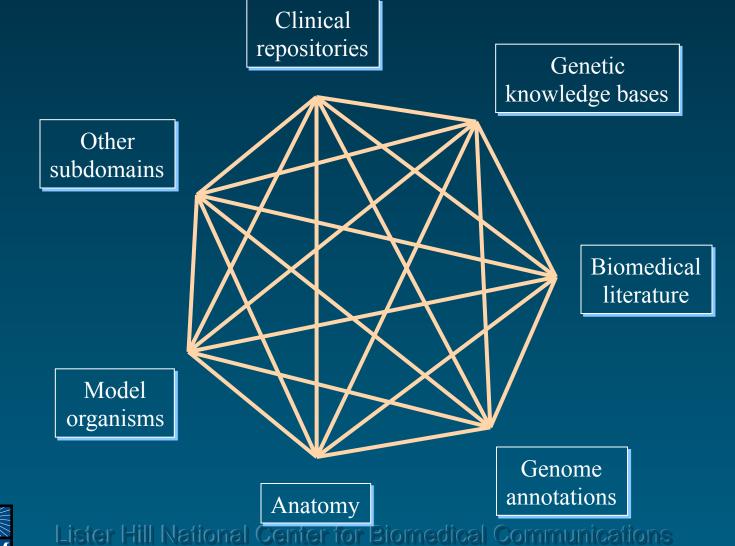
		List of Tables	numer	
Table Name	Source	Description		
1. Enrollment	Created by Data	The SCDM Enrollment Table has a start/stop structure that contains one record per continuous er	nrollment	
	Partners using Data	period. Members with medical coverage, drug coverage, or both should be included. A unique cor	mbination	
	Partner data.	of PatID, Enr_Start, Enr_End, MedCov, DrugCov, and Chart identifies a unique record. A break in enrollment		
		(of at least one day) or a change in either the medical or drug coverage variables should generate	e a new	
		record.		
2. Demographic	Created by Data	The SCDM Demographic Table contains one record per PatID with the most recent information on		
	Partners using Data	Birth_Date, Sex, Race/Ethnicity, and Zip Code.		
3. Dispensing	Created by Data	The SCDM Outpatient Pharmacy Dispensing Table contains one record per unique combination of PatID,		
	Partners using Data	NDC, and RxDate. Each record represents an outpatient pharmacy dispensing. Rollback transactions and		
	Partner data.	other adjustments should be processed before populating this table.		
4.1 Encounter	Created by Data	The SCDM Encounter Table contains one record per PatID and EncounterID. Each encounter should have a		
	Partners using Data	single record in the SCDM Encounter Table. Each diagnosis and procedure recorded during the encounter		
	Partner data.	should have a separate record in the Diagnosis or Procedure Tables. Multiple visits to the same provider		
		on the same day should be considered one encounter and should include all diagnoses and procedures		
		that were recorded during those visits. Visits to different providers on the same day, such as a ph	rded during those visits. Visits to different providers on the same day, such as a physician	
		appointment that leads to a hospitalization, should be considered multiple encounters. Rollback	ent that leads to a hospitalization, should be considered multiple encounters. Rollback	
		transactions and other adjustments should be processed before populating this table.		
4.2 Diagnosis	Created by Data	The SCDM Diagnosis Table contains one record per unique combination of PatID, EncounterID, D)	K, and	
	Partners using Data	DX_CodeType. This table should capture all uniquely recorded diagnoses for all encounters.		
	Partner data.		List of Tables (co	
4.3 Procedure	Created by Data	The SCDM Procedure Table contains one record per unique combination of PatID, EncounterID, F	Table Name	
	Partners using Data	PX_CodeType. This table should capture all uniquely recorded procedures for all encounters.	6.2 Vital Signs	
5.1 Death	Created by Data	The SCDM Death Table contains one record per PatID. When legacy data have conflicting report	0.2 Vital Olylis	
	Partners using Data	make a local determination as to which to use. There is typically a 1-2 year lag in death registry	7 (
	Partner data.		7. Inpatient Pharmacy	
5.2 Cause of Death	Created by Data	The SCDM Cause of Death Table contains one record per unique combination of PatID and COD.	1 Haimacy	
	Partners using Data	legacy data have conflicting reports, please make a local determination as to which to use. Ther		
	Partner data.	typically a 1-2 year lag in death registry data.	8. Inpatient	
6.1 <u>Laboratory</u> Result	Created by Data	The SCDM Laboratory Result Table contains one record per result/entry. Only include resulted la	<u>Transfusion</u>	
	Partners using Data	Data Partners are strongly encouraged to review the comprehensive Sentinel Common Data Mod		
	Partner data.	Laboratory Result Table Documentation for details on how to populate each variable.		

Role of terminologies

- Normalization
 - Different datasets may be annotated in reference to different terminologies
 - Identify equivalent (or close) concepts across terminologies
- ◆ Aggregation
 - Queries are generally formulated at a high-level
 - Terminologies support aggregation
 - Transitive closure
 - Value sets

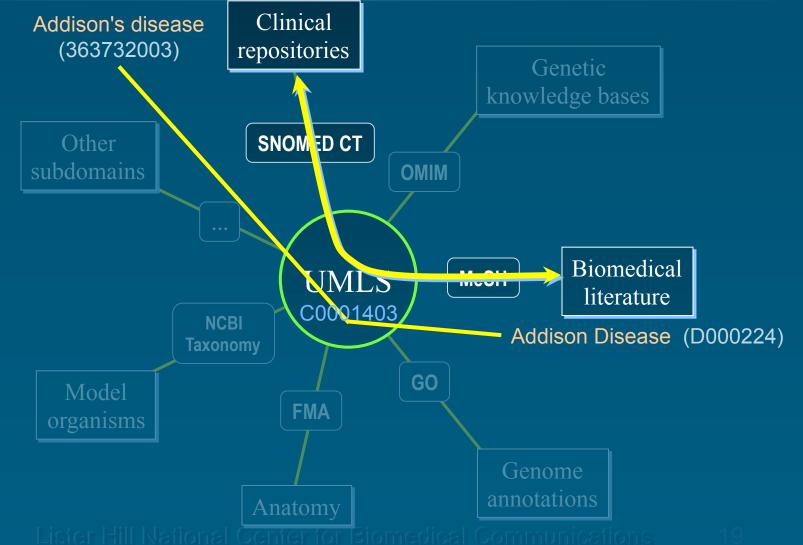
Terminologies used for heath data analytics

- Main clinical terminologies for the Meaningful Use incentive program (clinical documentation; clinical quality measures)
 - SNOMED CT
 - LOINC
 - RxNorm
- ◆ Legacy terminologies (billing)
 - [ICD9-CM]; ICD10-CM
 - CPT
- Other terminologies (CDISC)
 - NCI Thesaurus



Binding between terminology and information model

- Often involves mapping
- Can happen at various stages along of the integration process
 - ETL Extract / Transform / Load
 - Query (query translation)
- ◆ Issues
 - Integrating heterogeneous datasets
 - Different terminologies
 - Different levels of granularity



Terminology integration

Terminology integration

Observational Health Data Sciences and Informatics (OHDSI)

OHDSI Outline

- From OMOP to OHDSI
- Foundational principles
- ◆ OHDSI software, test data and methods
- Use cases and research
 - PNAS paper

From OMOP to OHDSI

- OMOP Observational Medical Outcomes Partnership
 - Public-private partnership established to inform the appropriate use of observational healthcare databases for studying the effects of medical products (2008-2013)
 - Community of researchers from industry, government, and academia
 - Achievements
 - Conduct methodological research to empirically evaluate the performance of various analytical methods on their ability to identify true associations and avoid false findings
 - Develop tools and capabilities for transforming, characterizing, and analyzing disparate data sources across the health care delivery spectrum
 - Establish a shared resource so that the broader research community can collaboratively advance the science

From OMOP to OHDSI

- ◆ OHDSI Observational Health Data Sciences and Informatics
 - Multi-stakeholder, interdisciplinary collaborative to bring out the value of health data through large-scale analytics
 - International network of researchers and observational health databases with a central coordinating center housed at Columbia University
 - Continues to actively use the OMOP Common Data Model and Standardized Vocabularies
 - Develops open-source solutions [with Greek names]
 - Annual symposium

Foundational principles

- Data standardization through
 - Common data model (OMOP CDM)
 - Standard vocabularies
- Conversion (ETL) of the local clinical data warehouse to the OMOP CDM and standard vocabularies
 - Supported by the WhiteRabbit tool
- Applicable to various types of observational data (EHR, claims)
- ◆ Data remain local to a clinical institution
- The same query can be executed at each site and the results aggregated across sites
- Research projects are based on rigorous protocols
- Open-source software

OHDSI software

- ◆ ATLAS unified interface to multiple OHDSI tools
- ◆ ATHENA access to standardized vocabularies
- ◆ ACHILLES database characterization and data quality assessment
- ◆ CALYPSO analytical component for clinical study feasibility assessment
- ◆ CIRCE cohort creation
- ♦ HERACLES cohort-level analysis and visualization
- ◆ LAERTES system for investigating the association of drugs and health (adverse events)
- ◆ DRUG EXPOSURE EXPLORER visualize drug exposures (an experimental deployment using the SynPUF 1% simulated patient data set)

OHDSI methods

- ◆ Population-Level Estimation
 - Safety surveillance
 - Comparative effectiveness
- Patient-Level Prediction

- Implemented with open-source tools for largescale analytics
 - R packages

Examples of network research studies

 Comparison of combination treatment in hypertension

In development

- Comparative effectiveness of alendronate and raloxifene in reducing the risk of hip fracture
- ◆ Levetiracetam and risk of angioedema in patients with seizure disorder
- Drug utilization in children
- Characterizing treatment pathways at scale using the OHDSI network

OLLOQUIUR Saber

Characterizing treatment pathways at scale using the OHDSI network

Characterizing treatment pathways at scale using the OHDSI network

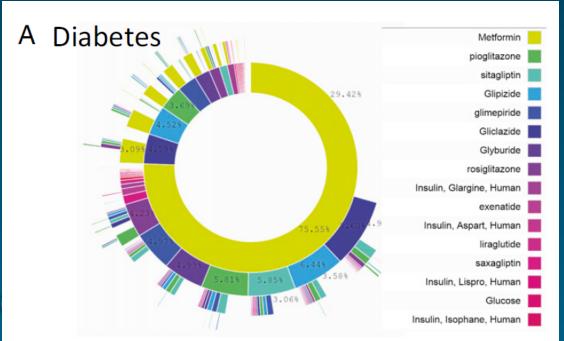
George Hripcsak^{a,b,c,1}, Patrick B. Ryan^{c,d}, Jon D. Duke^{c,e}, Nigam H. Shah^{cf}, Rae Woong Park^{cg}, Vojtech Huser^{c,h}, Marc A. Suchard^{c,i,j,k}, Martijn J. Schuemie^{c,d}, Frank J. DeFalco^{cd}, Adler Perotte^{a,c}, Juan M. Banda^{c,f}, Christian G. Reich^{c,l}, Lisa M. Schilling^{cm}, Michael E. Matheny^{cn,o}, Daniella Meeker^{c,p,q}, Nicole Pratt^{c,r}, and David Madigan^{c,s}

www.pnas.org/cgi/doi/10.1073/pnas.1510502113

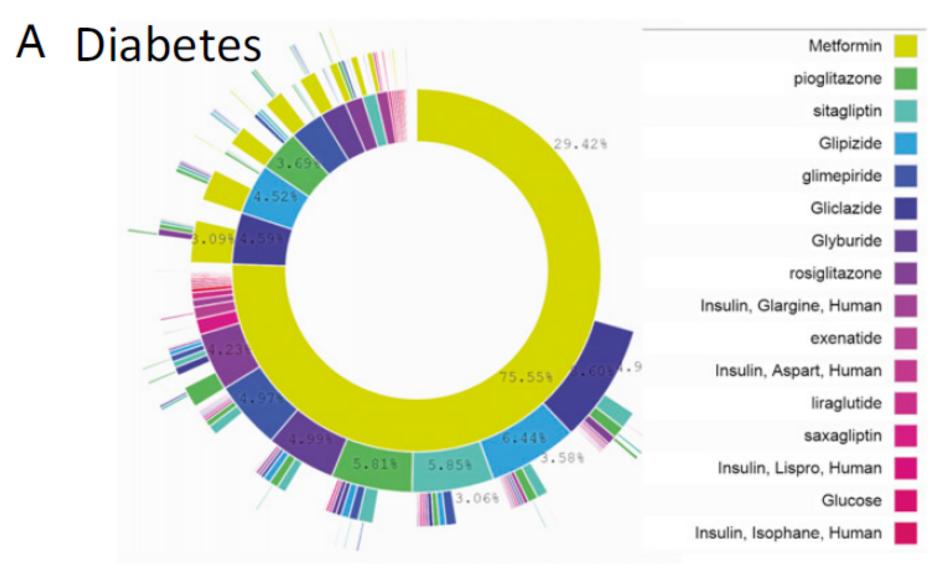
PNAS | July 5, 2016 | vol. 113 | no. 27 | 7329-7336

Characterizing treatment pathways at scale using the OHDSI network

- ◆ Objectives: analyze the variability of pharmacological treatment interventions over three years across three diseases (type-2 diabetes mellitus, hypertension, or depression)
- ◆ Inclusion criteria: exposure to an antidiabetic, antihypertensive, or antidepressant medication for 3 years, as well as presence of at least one diagnostic code for the corresponding disease
- ◆ Exclusion criteria: based on diagnostic data (e.g., exclusion of schizophrenia patients from the depression cohort)

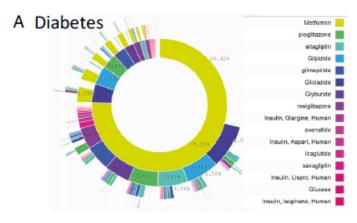

Characterizing treatment pathways at scale using the OHDSI network

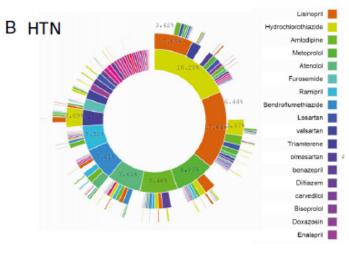
- Materials: 11 datasets representing a total of 255 million patients
 - EHR data (South Korea, U.K., U.S.) 67M
 - Claims data (U.S., Japan) 188M
- Methods: Analyze the sequences of medications that patients were placed on during those 3 years, to reveal patterns and variation in treatment among data sources and diseases

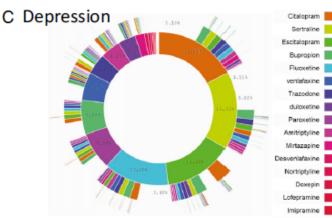

Characterizing treatment pathways at scale using the OHDSI network

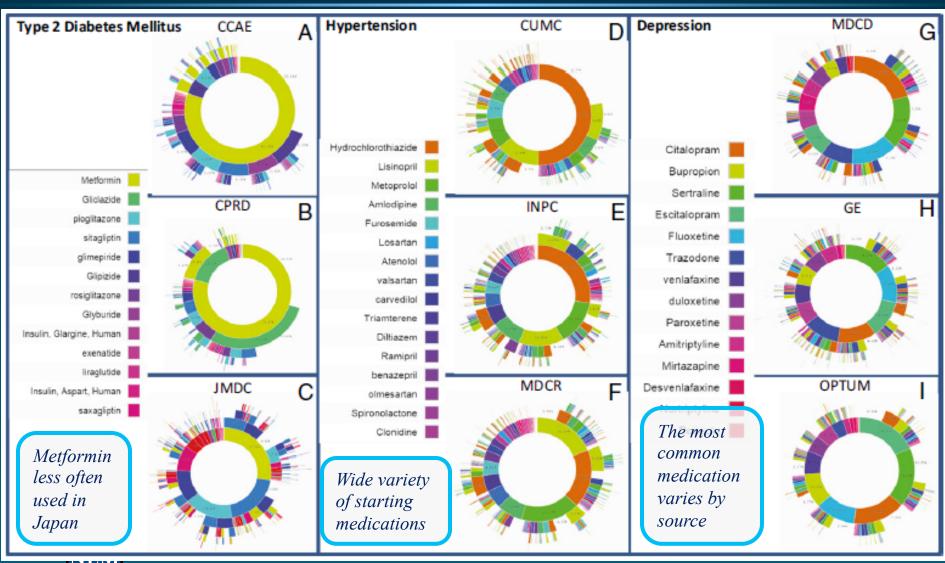
- Results
 - Patients with 3 years of uninterrupted therapy
 - 327,110 diabetes patients
 - 1,182,792 hypertension patients
 - 264,841 depression patients
 - Treatment pathways

Lister Hill Nati




Differences across diseases


- Diabetes
 - Metformin is the first line of treatment and often the only treatment
- Hypertension
 - Slight predominance of HCTZ, frequently paired with other medications
- Depression
 - Even spread of medications
- Unique treatment pathways (within a cohort)
 - 10% TDM
 - 25% HTN


Lister Hill National Center for Biomedica

Differences across countries

All of Us – Precision Medicine Initiative

U.S. Department of Health & Human Services

National Institutes of Health

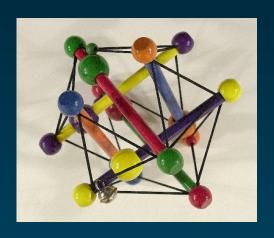
ABOUT ~

NEWS, EVENTS, & MEDIA

SUBSCRIBE

Search

Q



The future of health begins with $\Delta \parallel of$ US

The All of Us Research Program is a historic effort to gather data from one million or more people living in the United States to accelerate research and improve health. By taking into account individual differences in lifestyle, environment, and biology, researchers will uncover paths toward delivering precision medicine.

WATCH VIDEO 🕑

Medical Ontology Research

Contact: olivier@nlm.nih.gov

Web: https://mor.nlm.nih.gov

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

U.S. National Library of Medicine