Presentation Overview

- Introduction
- SNOMED CT Features
- Data Analytics
 - Preparing Data for Analytics
 - SNOMED CT Techniques
 - Record Query Techniques
 - Analytics Tasks
 - Challenges
- Clinical Decision Support
 - Overview
 - Logical Architecture
 - Knowledge Base
 - Communications

Data Analytics and Clinical Decision Support with SNOMED CT

Linda Bird and Jon Zammit
IHTSDO
Introduction

Data Analytics

Discovery & communication of meaningful patterns in data

- May describe, predict and improve business performance
- May recommend action or guide decision making

Scope:
- Individual patient
- Individual healthcare worker
- Patient groups / cohorts
- Enterprise groups
- Geographic groups

Substrate:
- Unstructured free text documents
- Structured documents using SNOMED CT
- Structured documents using other coding systems
- ‘Big data’
Analytics Purposes - Overview

Benefit Individuals
Patients and Clinicians

CLINICAL ASSESSMENT AND TREATMENT

Evidence-Based Healthcare

RESEARCH
(Clinical knowledge)

POPULATION MONITORING

Benefit Populations

Analytics Purposes – Individual Care

- SNOMED CT may be used to support analytics that
 - Improves care for individuals by enabling
 - Retrieval and sharing of information to better support care
 - Reduction in duplication of investigations and interventions
 - Integration with decision support tools to guide care
 - Context sensitive presentation of guidelines and care pathways
 - Identification of patients requiring follow-up or treatment changes
 - Professional logs and performance tracking
 - Work list generation and workload monitoring
Analytics Purposes – Population Care

- SNOMED CT may be used to support analytics that
 - Improves the care of populations by enabling
 - Epidemiological monitoring and reporting
 - Audit of clinical care and service delivery
 - Systems that measure and maximize the delivery of cost-effective treatments and minimize the risk of costly errors

Analytics Purposes – Evidence Based Healthcare

- SNOMED CT may be used to support analytics that
 - Supports evidence-based healthcare and clinical knowledge research by enabling
 - Identification of clinical trial candidates
 - Research into the effectiveness of different approaches to disease management
 - Clinical care delivery planning
 - Planning for future service delivery provision
SNOMED CT Features

SNOMED CT Core Features

- Concepts
 - Enable meaning-based queries
- Descriptions
 - Assist searching for concepts
 - Enhance string-matching in NLP
 - Multi-lingual support
- Relationships
 - Support queries based on defined meaning
 - Aggregation
 - Query detailed content stored in EHRs using more abstract concepts
SNOMED CT Additional Features

- Concept Model
 - Provides foundation for processing clinical meaning
- Expressions
 - Enable meaning-based queries over more than just concepts
- Reference sets
 - Represent subsets of concepts to help define query criteria
 - Represent non-standard aggregations for specific use cases
 - Define maps from other code systems to SNOMED CT
 - Define sets of language or dialect specific descriptions
- Description Logic
 - Supports computation of subsumption and equivalence

SNOMED CT Other Benefits for Analytics

- Broad domain coverage
 - Enables queries across disciplines, specialties and domains
- Robust versioning
 - Helps to manage queries over longitudinal health records
- International
 - Enables queries, subsets, rules and maps to be shared and reused between countries
- Localization mechanisms
 - Allows queries to be applied to data from different countries, dialects, regions & applications
Preparing Data for Analytics

1. Natural Language Processing
 - Enables a computer program to analyse and extract meaning from human language
 - Automatic coding of free text is not always reliable
 - Requires manual validation of automatic coding
 - Context that is not coded can lead to incorrect query results

2. Mapping Other Code Systems to SNOMED CT
 - SNOMED CT can be used as a common reference terminology for querying over data sources that use different coding systems
 - Direction and correlation of map effect the quality of analytics

3. Mapping SNOMED CT to statistical classification
 - Useful when aggregation of codes into a single category is required
SNOMED CT Analytics Techniques

- Subsets
- Subsumption
- Defining relationships
- Description logic over terminology
- Description logic over terminology and structure
Subsets - Overview

- Create subsets of concepts for a specific clinical purpose
 - Manual inclusion using search and browse
 - Using an existing subset as a starting point
 - Lexical queries (string matching) to identify candidates
 - Hierarchical queries to select descendants of a concept
 - Attribute queries to find concepts with a specific attribute value
 - SNOMED CT queries using a combination of features

- Subsets may be defined:
 - Extensionally
 - Flat list of concept identifiers
 - Distributed using a simple or ordered refset
 - Intensionally
 - Using a machine processable query
 - Distributed using a query refset

- Test the codes in patient records for membership

Subsets – Extensional Example

Patient Record
- Patient id: 1755
- Diagnosis: 38115001 | Tuberculosis of spinal meninges|

Subset

<table>
<thead>
<tr>
<th>Concept ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>56717001</td>
<td>tuberculosis (disorder)</td>
</tr>
<tr>
<td>58437007</td>
<td>tuberculosis of meninges (disorder)</td>
</tr>
<tr>
<td>90302003</td>
<td>tuberculosis of cerebral meninges (disorder)</td>
</tr>
<tr>
<td>38115001</td>
<td>tuberculosis of spinal meninges (disorder)</td>
</tr>
<tr>
<td>447332005</td>
<td>tuberculous abscess of epidural space (disorder)</td>
</tr>
<tr>
<td>11676005</td>
<td>tuberculous leptomeningitis (disorder)</td>
</tr>
<tr>
<td>447253004</td>
<td>tuberculous arachnoiditis (disorder)</td>
</tr>
<tr>
<td>31112008</td>
<td>tuberculous meningoesophagealitis (disorder)</td>
</tr>
</tbody>
</table>
Subsets – Intensional Example

Patient Record
• Patient id: 1755
• Diagnosis: 38115001 \(\text{Tuberculosis of spinal meninges}\)

Subset
• Definition: << 56717001 \(\text{Tuberculosis}\)
• Expansion:
 - Tuberculosis of central nervous system (disorder)
 - Tuberculosis of brain (disorder)
 - Tuberculosis of meninges (disorder)
 - Tuberculosis of cerebral meninges (disorder)
 - Tuberculosis of spinal meninges (disorder)
 - Tuberculous leptomeningitis (disorder)
 - Tuberculous encephalitis or myelitis (disorder)
 - Tuberculous myelitis (disorder)
 - Tuberculosis of ear (disorder)

Subsumption - Overview

- Subsumption occurs when one clinical meaning is a subtype of another clinical meaning
 - Example: Which patients have an infectious disease?
 - Involves finding all patients with any kind of infectious disease including 75570004 \(\text{Viral pneumonia}\)

- Using the SNOMED CT Expression Constraint Language
 - Uses ‘<’ (descendantOf) and ‘<<’ (descendantOrSelfOf)
 - Example
 - << 40733004 \(\text{Infectious disease}\)

- Techniques for testing subsumption include
 - Precomputed transitive closure table
 - Using a Description Logic reasoner
Subsumption - Example

Hospital Audit for Patients with Infectious Diseases

```
SELECT * FROM health_records
WHERE diagnosis =
  (<< 40733004 |Infectious disease|)
```

<table>
<thead>
<tr>
<th>patientID</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>634711</td>
<td>71620000 [Fracture of femur]</td>
</tr>
<tr>
<td>634711</td>
<td>40468003 [Hepatitis A]</td>
</tr>
<tr>
<td>634711</td>
<td>66308002 [Fracture of humerus]</td>
</tr>
<tr>
<td>158775</td>
<td>415353009 [Rotavirus food poisoning]</td>
</tr>
<tr>
<td>889125</td>
<td>75570004 [Viral pneumonia]</td>
</tr>
<tr>
<td>456872</td>
<td>22298006 [Myocardial infarction]</td>
</tr>
<tr>
<td>456872</td>
<td>195967001 [Asthma]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>subtype</th>
<th>supertype</th>
</tr>
</thead>
<tbody>
<tr>
<td>34014006</td>
<td>40733004</td>
</tr>
<tr>
<td>312130009</td>
<td>34014006</td>
</tr>
<tr>
<td>312130009</td>
<td>312130009</td>
</tr>
<tr>
<td>40468003</td>
<td>3738000</td>
</tr>
<tr>
<td>40468003</td>
<td>4073304</td>
</tr>
<tr>
<td>40468003</td>
<td>34014006</td>
</tr>
<tr>
<td>312130009</td>
<td>34014006</td>
</tr>
<tr>
<td>3738000</td>
<td>4073304</td>
</tr>
<tr>
<td>3738000</td>
<td>34014006</td>
</tr>
<tr>
<td>312130009</td>
<td>4073304</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>415353009</td>
<td>4073304</td>
</tr>
</tbody>
</table>

Subsumption - Example

Hospital Audit for Patients with Infectious Diseases

```
SELECT * FROM health_records
WHERE diagnosis =
  (<< 40733004 |Infectious disease|)
```

<table>
<thead>
<tr>
<th>patientID</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>634711</td>
<td>71620000 [Fracture of femur]</td>
</tr>
<tr>
<td>634711</td>
<td>40468003 [Hepatitis A]</td>
</tr>
<tr>
<td>634711</td>
<td>66308002 [Fracture of humerus]</td>
</tr>
<tr>
<td>158775</td>
<td>415353009 [Rotavirus food poisoning]</td>
</tr>
<tr>
<td>889125</td>
<td>75570004 [Viral pneumonia]</td>
</tr>
<tr>
<td>456872</td>
<td>22298006 [Myocardial infarction]</td>
</tr>
<tr>
<td>456872</td>
<td>195967001 [Asthma]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>subtype</th>
<th>supertype</th>
</tr>
</thead>
<tbody>
<tr>
<td>34014006</td>
<td>40733004</td>
</tr>
<tr>
<td>312130009</td>
<td>34014006</td>
</tr>
<tr>
<td>312130009</td>
<td>312130009</td>
</tr>
<tr>
<td>40468003</td>
<td>3738000</td>
</tr>
<tr>
<td>40468003</td>
<td>4073304</td>
</tr>
<tr>
<td>40468003</td>
<td>34014006</td>
</tr>
<tr>
<td>312130009</td>
<td>34014006</td>
</tr>
<tr>
<td>3738000</td>
<td>4073304</td>
</tr>
<tr>
<td>3738000</td>
<td>34014006</td>
</tr>
<tr>
<td>312130009</td>
<td>4073304</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>415353009</td>
<td>4073304</td>
</tr>
<tr>
<td>75570004</td>
<td>4073304</td>
</tr>
</tbody>
</table>
Defining Relationships - Overview

- Represent a characteristic of the meaning of a concept
- More than 50 attributes, including:
 - 363698007 [Finding site]
 - 116676008 [Associated morphology]
 - 246075003 [Causative agent]
 - 363704007 [Procedure site]
 - 260686004 [Method]
 - 272741003 [Laterality]
- SNOMED CT Concept Model provides rules for how these attributes can be used
- Implementation approaches include
 - Using the distributed Relationships file
 - Comparing normal form expressions
 - Using a Description Logic Reasoner

Defining Relationships – Example
Defining Relationships – Example

SNOMED CT Expression Constraint Language

\[
< 404684003 | \text{Clinical finding} | : 116676008 | \text{Associated morphology} | = << 3898006 | \text{Benign neoplasm} | \text{AND} 363698007 | \text{Finding site} | = << 64033007 | \text{Kidney structure} >
\]

<table>
<thead>
<tr>
<th>Concept ID</th>
<th>Preferred Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>254925008</td>
<td>Benign tumor of renal calyx</td>
</tr>
<tr>
<td>254919009</td>
<td>Cortical adenoma of kidney</td>
</tr>
<tr>
<td>269489006</td>
<td>Benign tumor of renal parenchyma</td>
</tr>
<tr>
<td>254920003</td>
<td>Cystadenoma of kidney</td>
</tr>
<tr>
<td>254922006</td>
<td>Oncocytoma of kidney</td>
</tr>
<tr>
<td>276866009</td>
<td>Benign tumor of pelviureteric junction</td>
</tr>
<tr>
<td>254927000</td>
<td>Benign papilloma of renal pelvis</td>
</tr>
<tr>
<td>92319008</td>
<td>Benign neoplasm of renal pelvis</td>
</tr>
<tr>
<td>307618001</td>
<td>Juxtaglomerular tumor</td>
</tr>
<tr>
<td>254923001</td>
<td>Hemangiopericytoma of kidney</td>
</tr>
<tr>
<td>254921004</td>
<td>Angiomyolipoma of kidney</td>
</tr>
<tr>
<td>92165001</td>
<td>Benign neoplasm of kidney</td>
</tr>
</tbody>
</table>

Description Logic over Terminology - Overview

- SNOMED CT semantics are based on Description Logic
- This enables
 - The automation of reasoning across SNOMED CT
 - The implementation of more powerful analytics operations
 - Testing subsumption and equivalence
 - Testing defining attribute values
 - Property chaining
 - Advanced reasoning (concrete values and GCIs)
- Implementation
 - Translate SNOMED CT into OWL 2
 - Use Perl transform script
 - Load OWL files into a DL enabled service
 - Use DL reasoner – e.g. FACT++, ELK, Snorocket
 - Semantic query languages – e.g. SPARQL, DL Query
Description Logic over Terminology - Example

- Find all disorders that are associated with the organism ‘streptococcus pyogenes’
- Use property chain rule:
 47429007 |Associated with| o 47429007 |Associated with|
 ➔ 47429007 |Associated with|

Disorder

- 81077008 Acute rheumatic arthritis
- 58718002 Rheumatic fever
- 3029008 Streptococcus pyogenes infection
- 4073004 Infectious disease

Organism

- 80166006 Streptococcus pyogenes

Description Logic over Terminology and Structure

- The information model and the terminology each captures part of the semantics in a patient record
- The same semantics can be represented using different information structures and terminology values
- Description logic may be used to achieve a canonical representation of the meaning in both representations
- Uses ‘expression templates’ for each information model to capture the DL pattern expressed
Description Logic over Terminology and Structure

Family history

- **Problem (coded text)**: 56265001 heart disease
- **Relationship (coded text)**: 72705000 mother

Clinical history

- **Problem (coded text)**: 275120007 family history: cardiac disorder

Example logic expressions:

- **416471007**: Family history of clinical finding
- **246090004**: Associated finding = 56265001 Heart disease,
- **408732007**: Subject relationship context = 444301002 Mother of subject,
- **408731000**: Temporal context = 410511007 Current or past (actual),
- **408729009**: Finding context = 410515003 Known present
Description Logic over Terminology and Structure

275120007 [Family history: cardiac disorder]

Clinical history

Problem (coded text)

275120007 [family history: cardiac disorder]

Description Logic over Terminology and Structure

416471007 [Family history of clinical finding]
246090004 [Associated finding] = 56265001 [Heart disease],
408732007 [Subject relationship context] =
 444301002 [Mother of subject],
408731000 [Temporal context] = 410511007 [Current or past (actual)],
408729009 [Finding context] = 410515003 [Known present]

subtype of

275120007 [Family history: cardiac disorder]
Record Query Techniques

SNOMED CT Languages

- **Compositional Grammar**
 24136001 | Hip joint structure | :
 272741003 | Laterality | = 7771000 | Left |

- **Expression Constraint Language**
 << 404684003 | Clinical finding | :
 363698007 | Finding site | = << 39057004 | Pulmonary valve structure | ,
 116676008 | Associated morphology | = << 415582006 | Stenosis |

- **Expression Template Language**
 24136001 | Hip joint structure | :
 272741003 | Laterality | = [[+ (< 182353008 | side |) $side]]

- **Query Language**
 << 64572001 | Disease |
 {{ definitionStatus = 900000000000073002 | Defined ,
 preferredTerm = ".*heart.*",
 languageRefSet = 90000000000508004 | GB English | }}
Terminology APIs and Services

- Used to request the execution of SNOMED CT queries by SNOMED CT enabled terminology server
- Standards
 - HL7 FHIR Terminology Services
 - HL7 Common Terminology Services 2 (CTS2)
 - IHTSDO Open Tooling Framework APIs
- Proprietary
 - Dataline’s SnAPI solution
 - B2i’s Snow Owl Terminology Server

Patient Record Queries with SNOMED CT and SQL

Query options

- List all possible SNOMED CT codes in query

  ```sql
  SELECT DISTINCT patientID FROM ProblemList
  WHERE code IN (140004, 181007, 222008, 490008 etc)
  ```

- Load subset into a separate table

  ```sql
  SELECT DISTINCT patientID FROM ProblemList
  WHERE code IN (SELECT code FROM RespiratoryDisorders)
  ```

- Use Transitive Closure Table to test susumption

  ```sql
  SELECT DISTINCT patientID FROM ProblemList PL
  INNER JOIN TransitiveClosure TC ON TC.sourceld = PL.code
  WHERE TC.targetId = 50043002
  ```

- Embed a terminology query language in record query

  ```sql
  SELECT DISTINCT patientID FROM ProblemList
  WHERE code in (< 50043002 |disorder of respiratory system|)
  ```
Querying “Big Data”

- Large volumes of structured and unstructured data sets
- Tools for distributed storage and processing of big data
 - NoSQL (Not Only SQL) systems – e.g. RDFox
 - Store and retrieve data in a variety of structures, including relational, key-value, graph or documents
 - Apache Hadoop
 - Open source software which splits files into large blocks and distributes these blocks amongst nodes in cluster
 - Processes nodes in parallel; supports horizontal scaling

Analytics Tasks
SNOMED CT Analytics Tasks

- Point of care analytics
 - Historical summaries
 - Point of care reporting
 - Clinical decision support
- Population based analytics
 - Trend analysis
 - Pharmacovigilance
 - Clinical audit
- Clinical research
 - Identification of clinical trial candidates
 - Predictive medicine
 - Semantic search

Point of Care Analytics

- Historical Summaries
 - Summaries of a patient's clinical history
 - Aggregated data from various institutions, models & code systems
- SNOMED CT Techniques
 - SNOMED CT as a common reference terminology (mapping)
 - Encode free text clinical data (NLP)
 - Group codes into more general categories (subsumption)
 - Use defining relationships to filter relevant records
Point of Care Analytics

- **Point of Care Reporting**
 - SNOMED CT enables ‘collect once and use many times’ goal
 - Examples include
 - Helping clinicians remember preventative services (reminders)
 - Identifying patients with care gaps and risk factors
 - Monitoring patient compliance with prescribed treatments
 - Reporting clinical data to disease registries
- **SNOMED CT techniques**
 - Mapping to SNOMED CT, Subsets, Subsumption, Defining Relationships, Description Logic, Mapping to classifications

Population-based Analytics

- **Trend Analysis**
 - The process of extracting underlying patterns or trends in data
 - Can be used to detect changes in incidence or prevalence of a disease, treatment, procedure or intervention over time
 - For population health monitoring, prediction of demand, and effective resource allocation
 - **SNOMED CT techniques**
 - Subsumption testing using SNOMED CT’s polyhierarchy
 - Helps to distinguish minor changes in coding style from real changes in disease incidence
 - Which level of aggregation to use can be arbitrary
 - **UK Data Migration Workbench**
 - Identifies most frequently used types of codes using a novel algorithm where each subtree has around 1% of all codes
Population-based Analytics

- **Pharmacovigilance**
 - Collection, detection, assessment, monitoring and prevention of adverse effects with pharmaceutical products
 - Uses a number of data sources including
 - Clinical trial data, Medical literature, Reporting databases, Prescription events, Electronic Health Records, Patient registries
- **SNOMED CT Techniques**
 - NLP and mapping to support homogeneous approach to querying diseases, signs, symptoms, lab results, medications, devices, procedures, allergies, adverse reactions, body sites and substances
 - Subsumption and defining relationships
 - Maps to MedDRA for alternative form of analysis

Population-based Analytics

- **Clinical Audit**
 - Seeks to improve patient care and outcomes through systematic review of care against defined standards and the implementation of change
 - Questions asked in audit may include
 - What proportion of patients invited to attend cervical screening did so?
 - How many patients with ischemic heart disease are receiving appropriate drug treatments?
 - Are all patients with diabetes mellitus reviewed within a stated time interval?
- **SNOMED CT Techniques**
 - NLP, Mapping, Subset, Subsumption, Defining relationships, Description Logic
Clinical Research

- Identification of Clinical Trial Candidates
 - For recruitment into formal clinical trials
 - SNOMED CT techniques
 - Subsets of findings, procedures or medications
 - Subsumption
 - Defining relationships – for example:
 - Patients with diseases of specific anatomical site or morphology
 - Patients taking medications with specific ingredients or forms
 - Patients who have had procedures on a specific body site
 - Description Logic

Clinical Research

- Predictive Medicine
 - Predicting the probability of disease and implementing measures to either prevent or significantly decrease its impact, such as
 - Lifestyle modifications
 - Increased physician surveillance
 - E.g. Regular skin exams, mammograms, colonoscopies
 - Focuses on genetic markers, phenotypic, environmental factors and other lifestyle factors.
 - SNOMED CT can help with
 - Identifying clinical trial candidates
 - Analyzing clinical data, such as family history, lifestyle and environmental findings
 - Linking patient data and risk assessment rules, so that rules can be triggered based on codes recorded in clinical data
Clinical Research

▪ Semantic Search
 ▪ Searching medical literature and clinical reports
 ▪ Indexes collections of free text transcripts and documents
 ▪ Supports topic specific searches – for example:
 ▪ Show me articles related to inflammatory bowel disease
 ▪ Does this patient have transcripts in their record suggesting a heart rhythm disturbance?
▪ SNOMED CT techniques
 ▪ Synonyms (vocabulary mismatch)
 ▪ Subsumption (granularity mismatch)
 ▪ Defining relationships (conceptual implication)
 ▪ Subsets (inferences of similarity)
 ▪ Assign weight to each relationship type to determine relevance of each document

Challenges
Challenges for Clinical Analytics

- Reliability of patient data
- Terminology / information model boundary issues
- Concept definition issues
- Versioning

Clinical Decision Support

Overview
Logical Architecture
Knowledge Base
Inference Engine
Communications
Overview

Clinical Decision Support Overview

- **Clinical Decision Support**
 - **What?**
 - Enables healthcare providers to make well-informed decisions
 - **How?**
 - Supplies guidance, knowledge, and patient-specific information
 - **When?**
 - At relevant points in the patient journey
 - Such as diagnosis, treatment, and follow-up
Clinical Decision Support Systems

- **CDSS**
 - A system designed to improve clinical decision-making related to diagnostic or therapeutic processes of care
 - Typically a decision support system responds to "triggers"
 - Specific diagnoses
 - Laboratory results
 - Medication choices
 - Complex combinations of these
 - Provides information or recommendations directly relevant to a specific patient encounter

Definition from U.S. Department of Health and Human Services, Agency for Healthcare Research and Quality

Functional Areas of CDS

- Implemented in a variety of tools, services
 - Alerts
 - Designed to interrupt clinicians or patients at appropriate time
 - Clinical guidelines / reference information
 - Links to external knowledge references
 - Based on relevant, context-dependent data captured in a patient health record
 - Conditional order sets / Pathway support
 - Guides clinicians through complex care pathways
 - Automatically triggered reports, summaries, or smart forms
 - Facilitate high quality records, reduction of errors, more complete information
 - Diagnostic support tools
 - Aid the clinician in making a diagnosis
Clinical Areas

- Use Cases
 - Medication management
 - Asthma management guidelines
 - Diagnosis (e.g. diabetes)
 - Laboratory (e.g. critical results)
 - Radiology
 - Contraindication
 - Appropriate imaging
 - Nursing interventions
 - Infectious disease reporting
 - Clinical quality improvement
 - And many more…

CDS Example – Penicillin Allergy Alert

Condition: Patient has penicillin allergy and clinician is prescribing new drug containing penicillin

Action: Display alert to clinicians

Alert: Patient is allergic to penicillin. [Search for safe alternatives.]
CDS Example – Penicillin Allergy Alert

< 373873005 | Pharmaceutical / biologic product |
127489000 | Has active ingredient | = << 373270004 | Penicillin |

Logical Architecture
Components of a CDS-Enabled EHR

- **User Interface**
 - Provides inputs to system
 - Receives interventions (alerts)

- **Record Services**
 - Stores health records
 - Responds to health records queries

- **Terminology Services**
 - Responds to terminology queries

- **Clinical Decision Support System**
 - Executes Decision Support Logic

CDS-Enabled EHR

- **Inputs**
- **Outputs (Alerts)**
- **Processes**
- **User Interface**
- **Enters, Stores**
- **Searches, Retrieves, Displays**
- **Accesses**
- **Queries**
- **Record Services**
- **Terminology Services**
CDSS Internal Components

- **Knowledge Base**
 - Uses clinical knowledge
 - Stores clinical rules and guidelines
 - In machine processable format

- **Inference Engine**
 - Combines:
 - Inputs, health records, rules, and terminology
 - To execute decision support logic
 - Determines the outcome of rules

- **Communications**
 - Delivers outputs to external components
 - Example: Alerts to user interface
 - Handles system inputs
 - Example: Proposed drug or treatment regimen

CDSS High Level Architecture

- **Knowledge Base**
 - Stores Rules and Guidelines

- **Inference Engine**
 - Uses inputs, health records, rules, and terminology to execute decision support logic

- **Communications**
 - Displays alerts to user interface.
 - Accepts inputs from clinicians.
Knowledge Base – Overview

- Clinical knowledge fuels the knowledge base
- Developed by clinical experts in various domains
- Types of knowledge base artifacts
 - Decision support rules
 - Clinical guidelines and care pathways
 - Documentation templates
 - Order sets
- Rules and guidelines
 - May be published by 3rd party knowledge providers
 - Made available to inference engine in machine processable format
 - Enables execution of decision support logic
 - Updated when new clinical knowledge becomes available
Knowledge Base

- **Clinical Knowledge**
- **Rules and Guidelines:**
 - Loaded
- **CDS Logic:**
 - Executed
- **Machine Readable**
 - Rules and Guidelines: Processed

Knowledge Base – Rules

- **Rules follow a typical pattern**
 - First something happens (This is the event)
 - Clinician prescribes a drug to a patient
 - Clinical review of patients previously diagnosed with cancer
 - This triggers a question (This is the condition)
 - Has the patient been prescribed a medication containing a substance to which they are allergic?
 - Have all patients with a suspected cancer diagnosis been referred to a specialist within 14 days?
 - If "yes", then what should be done? (This is the action)
 - Alert the user and suggest a safe alternative
 - Refer identified patients to oncology specialist
- **Rules access both health records and terminology to determine whether or not condition is true**
Knowledge Base Rules – Example

- **Event**: Clinical encounter and diagnosis
- **Condition**: Clinician enters diagnosis of asthma
- **Action**: Display asthma management guidelines

Knowledge Base Rules – Logical Pattern

- **Event**: Clinical encounter
- **Condition**: Diagnosis is asthma
- **Action**: Display asthma management guidelines
Knowledge Base Rules and Context

- Evaluation of the condition must consider context
- Different ways of recording context in health records
 1. Precoordinated expressions (individual concepts)
 2. Postcoordinated expressions
 3. Context-specific section or field
 4. Separate context field, e.g. status
- SNOMED CT soft default context
 - |Finding context| = |Known present|
 - |Procedure context| = |Done|
 - |Subject relationship context| = |Subject of record|
 - |Temporal context| = |Current or specified time|

Knowledge Base Rules and Context – Examples

1. **Condition**: Current diagnosis of asthma
 Action: Display asthma management guidelines
 - Diagnosis of asthma (known absent):
 Should not trigger the rule

2. **Condition**: F/H of breast cancer + Age ≥ 40
 Action: Refer patient to breast screening program
 - Breast cancer recorded in family history section:
 Should trigger the rule

3. **Condition**: Current diagnosis of diabetes type II
 Action: Order HBA1C within 12 months
 - Past history of diabetes type II
 May not trigger the rule
Data Entry with Context

Select disorder:

Asthma
... ...

Finding context
Absent
Present

Subject relationship context
Family
Subject

Temporal context
Current
In the past

Knowledge Base Rules – Example 1

IF

ON clinical encounter

THEN
display asthma management guidelines

[+$diagnosis] = [Asthma]
AND [Finding context] = [Known present]
AND [Subject relationship context] = [Subject of record]
AND [Temporal context] = [Current or specified time]

Event
Condition(s)
Action

Context Specific Conditions
Knowledge Base Rules –
Additional Considerations

- Rules can have multiple conditions and actions
- A single condition exists of a criteria: value pair
- Criteria may refer to coded data elements
 - These may be expressed using SNOMED CT Expression Constraints
- Other criteria may refer to non-coded data elements
 - These may use operators appropriate for the datatype
 - Examples:
 - > 250 (numeric)
 - <= 7.5
 - != "absent" (i.e. string)
 - = true/false (i.e. Boolean)

Knowledge Base Rules – Example 2
Knowledge Base Rules – Example 3

IF
\(\text{ON publishing of lab results} \)

AND
\((\text{condition}) \rightarrow < 3.0 \text{ mmol/L} \)

THEN
alert attending physician

Event
Coded data element
Condition(s)
Non-coded data element
Action

Knowledge Base Guidelines

KEY CLINICAL ACTIVITIES FOR QUALITY ASTHMA CARE (continued)

<table>
<thead>
<tr>
<th>Clinical Issue</th>
<th>Key Clinical Activities and Action Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Education for Self-Management</td>
<td>Teach patients how to manage their asthma.</td>
</tr>
<tr>
<td>Teach and reinforce at each visit:</td>
<td></td>
</tr>
<tr>
<td>Self-monitoring to assess level of asthma control and recognize signs of worsening asthma (either symptom or peak flow monitoring).</td>
<td></td>
</tr>
<tr>
<td>Taking medication correctly (inhaler technique, use of devices; understanding difference between long-term control and quick-relief medications)</td>
<td></td>
</tr>
<tr>
<td>Long-term control medications (such as inhaled corticosteroids which reduce inflammation) prevent symptoms. Should be taken daily, will not give quick relief.</td>
<td></td>
</tr>
<tr>
<td>Quick-relief medications (short-acting beta-agonists or SABA’s) relax airway muscles to provide fast relief of symptoms. Will not provide long-term asthma control. If used >2 days/week (except as needed for exercise-induced asthma), the patient may need to start or increase long-term control medications.</td>
<td></td>
</tr>
</tbody>
</table>

SNOMED CT Semantic Tagging (metadata):
195967001 [Asthma (disorder)]
406162001 [Asthma management (regime/therapy)]
445531003 [Asthma control questionnaire (assessment scale)]

SNOMED CT Semantic Tagging (metadata):*
195967001 [Asthma (disorder)]
406162001 [Asthma management (regime/therapy)]
445531003 [Asthma control questionnaire (assessment scale)]

SNOMED CT Semantic Tagging (metadata):
195967001 [Asthma (disorder)]
406162001 [Asthma management (regime/therapy)]
445531003 [Asthma control questionnaire (assessment scale)]

Key Clinical Activities and Action Steps:
- Take daily actions to control asthma
- Adjust medications in response to worsening asthma
- Seek medical care as appropriate

Asthma Care Quick Reference, US Department of Health and Human Services, National Institutes of Health, National Heart Lung and Blood Institute
Knowledge Base Guidelines – Semantic Tags

\[\text{IF } 195949000 \rightarrow \text{Chronic asthmatic bronchitis} \rightarrow 195967001 \rightarrow \text{Asthma} \quad \text{THEN} \quad \text{display NIH Asthma Care Quick Reference} \]

Patient Encounter:

Diagnosis:
- Chronic asthmatic bronchitis

Knowledge Links:
- NIH Asthma Care Quick Reference

Semantic Tag:
- 105967001 | Asthma

Knowledge Base – Representation Standards

- Rule representations and standards
 - Arden Syntax
 - HL7 Implementation Guide for Arden Syntax, Release 1
 - HL7 FHIR DecisionSupportRule (Resource)
 - CDS Hooks
 - http://cds-hooks.org/
- Guideline definition
 - GELLO
 - HL7 Version 3 Standard: GELLO, A Common Expression Language, Release 2
 - Guideline Definition Language
 - http://www.openehr.org/releases/CDS/latest/docs/GDL/GDL.html
Inference Engine – Overview

- Processes machine readable rules
- Considers system inputs
- Accesses data in the health records
- Queries terminology services
- Establishes if conditions are met
- Determines outcome
- i.e. “executes” the Triggers
Reasoning with SNOMED CT: Overview

- SNOMED CT techniques may be applied to clinical decision support
- Assists inference engine in evaluating the trigger conditions defined in rules
- Techniques:
 - Subsets
 - Subsumption
 - Defining relationships
 - Description Logic
 - Over Terminology
 - Over Terminology and Structure
Reasoning with Subsets

IF $diagnosis = ^111115 [Asthma subset] THEN display asthma management guidelines

- Simple rule using a SNOMED CT subset
- Inference engine checks for subset membership
- Subset may be defined
 - Extensionally
 - By manually selecting values
 - More time consuming to develop and maintain
 - May overlook some necessary values in the subset
 - Intensionally
 - By defining membership using a query, e.g. expression constraint
 - Easier to maintain for new versions of SNOMED CT
 - Simple to refer to all values in a specific subhierarchy

Reasoning with Subsets

Diagnosis: Occasional Asthma

Asthma Conditions Subset:

<table>
<thead>
<tr>
<th>Id</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>304527002</td>
<td>Acute asthma</td>
</tr>
<tr>
<td>389145006</td>
<td>Allergic asthma</td>
</tr>
<tr>
<td>233678006</td>
<td>Childhood asthma</td>
</tr>
<tr>
<td>445427006</td>
<td>Seasonal asthma</td>
</tr>
<tr>
<td>370221004</td>
<td>Severe asthma</td>
</tr>
</tbody>
</table>

Concept ID: 370220003

Technique: Checks for ^111115 [Asthma subset]

- **Match:** No
- **Condition:** False
- **Action:** Not triggered
Reasoning using Subsumption

IF \$\text{diagnosis} = \text{<< 195967001 |Asthma|} \quad \text{THEN display asthma management guidelines}

- Rule uses Expression Constraint Language to define “asthma or subtypes”
- Engine to test for subsumption
 - Rules may reference subtypes, supertypes, descendants, ancestors, parents, children, etc
- Enables “richer” expression within rules
- Can be more efficient than maintaining subsets or extensionally defined lists

Reasoning with Subsumption

\textbf{Diagnosis:}

\begin{itemize}
 \item \textbf{Match:}
 \begin{itemize}
 \item Yes
 \end{itemize}
 \item \textbf{Condition:}
 \begin{itemize}
 \item True
 \end{itemize}
 \item \textbf{Action:}
 \begin{itemize}
 \item Triggered
 \end{itemize}
\end{itemize}

\textbf{Transitive Closure Table:}

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Supertype</th>
</tr>
</thead>
<tbody>
<tr>
<td>304527002</td>
<td>195967001</td>
</tr>
<tr>
<td>389145006</td>
<td>195967001</td>
</tr>
<tr>
<td>426979002</td>
<td>195967001</td>
</tr>
<tr>
<td>445427006</td>
<td>195967001</td>
</tr>
<tr>
<td>370221004</td>
<td>195967001</td>
</tr>
</tbody>
</table>
Reasoning using Defining Relationships

Rule uses Expression Constraint Language to constrain a set of procedures (those which have a procedure site of respiratory system)

Inference engine leverages concept definitions

Also facilitates richer expression in rules
 - Using SNOMED CT’s attribute relationships
 - Example: Drug active ingredients or procedure methods

IF $procedure = << 71388002 |Procedure| : 363704007 |Procedure site| = 20139000 |Structure of respiratory system|

THEN consult respirologist

SNOMED CT Relationships Table:

<table>
<thead>
<tr>
<th>sourceId</th>
<th>destinationId</th>
<th>typeId</th>
</tr>
</thead>
<tbody>
<tr>
<td>229308003</td>
<td>128258000</td>
<td>363702006</td>
</tr>
<tr>
<td>229308003</td>
<td>302803009</td>
<td>363702006</td>
</tr>
<tr>
<td>229308003</td>
<td>262202000</td>
<td>363703001</td>
</tr>
<tr>
<td>229308003</td>
<td>20139000</td>
<td>363704007</td>
</tr>
<tr>
<td>229308003</td>
<td>20139000</td>
<td>405813007</td>
</tr>
<tr>
<td>229308003</td>
<td>47545007</td>
<td>116680003</td>
</tr>
</tbody>
</table>

Concept ID: 229308003

Procedure: Intermittent CPAP
Communications – Overview

- Handles inputs and outputs for CDSS
- User inputs
 - Clinical data entered
 - User selections (criteria for CDS), for example:
 - Proposed drug, order set, or treatment regime
- Delivers outputs
 - i.e. “CDS Interventions”
 - Alerts
 - Guidelines
 - Refinements (diagnostic)
 - Smart Forms
 - Displayed to the User Interface
- Guidelines and references may be externally referenced
Communications

Rule condition is evaluated

Knowledge Resource

Delivery

User Interface

Communications

Communications – Example

CDS Notifications:
Patient has clinical markers that are considered a risk for Pompe Disease. Consider Ordering GAA enzyme activity assay to confirm absence or presence of diagnosis.

Reference Information
Links to Further Information

- Data Analytics with SNOMED CT
 - http://snomed.org/analytics

- SNOMED CT Languages
 - http://snomed.org/ecl
 - http://snomed.org/scg

- Technical Implementation Guide
 - http://snomed.org/tig

- Questions & Comments?