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HCAS Analytics Goals

Seamless integration of structured 

and unstructured data

Comprehensive use of available clinical data

Coded Healthcare Data

Qualitative Human Data

Quantitative Machine Data

Traditional Healthcare 
BI data source

Self service analytics

Benefits a broad range of users and use-cases

Intuitive Data Access
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Data sources

HCAS in the Healthcare IT Ecosystem
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Use of SNOMED CT

– HCAS uses SNOMED CT as a foundational ontology; it is applied to parametric text fields 
and free-text unstructured clinical data to enable full text indexing of clinical content within 
each record

– Annotation occurs automatically on specific data elements; users do not need to have any 
explicit knowledge of SNOMED CT

– Primary processing pipeline is context classification, negation, and concept entity 
identification

– Enables search capabilities based on key words, medical concepts, clinical codes, and 
colloquial terms

– Data, documents, and patients are quickly located, with relevant text highlighted for quick 
identification and review (computer assisted chart abstraction)



Ontology Tagger Approach
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OT 2.0 Architecture

Ontology Tagger (Java Server)
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Example Tagged XML

<ICD9>(571.1)ACUTE ALCOHOLIC HEPATITIS</ICD9>

<ICD9_H>(<H cid='C/SM/9953008'>571.1</H>)ACUTE ALCOHOLIC 

HEPATITIS</ICD9_H>

<EVENT>

<NAME>Potassium Chloride</NAME>

<NAME_H><H cid='C/SM/420155008'><H cid='C/SM/8631001'>Potassium Chloride</H></H></NAME_H>

<OCCURRENCES>3</OCCURRENCES>

</EVENT>

<FIELD>INDICATION:</FIELD> 50-year-old <H cid='C/SM/10052007'><H cid='C/SM/248153007'>male</H></H> with 

ETOH <H cid='C/SM/417928002'><H cid='C/SM/386702006'>abuse</H></H> and elevated LFTs. 

<FIELD>COMPARISONS:</FIELD> None. <FIELD>FINDINGS:</FIELD> Study is extremely limited secondary to patient 

body habitus. The <H cid='C/SM/181268008'><H cid='C/SM/10200004'>liver</H></H> is diffusely echogenic consistent with 

<H cid='C/SM/45752008'>fatty infiltration</H>. and is <NEG type='PRE'>not</NEG> dilated. Some <H 

cid='C/SM/44901006'>sludge</H> is noted within a mildly distended <H cid='C/SM/28231008'><H 

cid='C/SM/181269000'>gallbladder</H></H>. Mild <H cid='C/SM/28231008'><H 

cid='C/SM/181269000'>gallbladder</H></H> wall ….. He <NEG type='PRE'>denies</NEG> <SM_NEG 

cid='C/SM/267036007'>dyspnea</SM_NEG>, <SM_NEG cid='C/SM/21522001'>abdominal pain</SM_NEG>



Current Ontology Publishing Architecture
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2012-2013:  Stanford Children’s Health
Multi-patient Semantic Search (MPSS)

– Data

– 5 years of radiology reports and general clinical notes

– System features

– Metadata mapping of patient data

– Limited preset filter capabilities for structured data including 
date-time

– Cross-patient keyword/regex free-text searching

– Cohort generation

– Concept tag-cloud display, but no ontologies

– EMR document preview from within MPSS



2013-2014:  Stanford Children’s Health
US News and World Report (USNWR) Pilot

– Data:  

– ~115k patients, ~390k encounters, ~3 million documents from 
EMR (2011-2013)

– Structured

– Patient ID, age, Encounter ID, location, Diagnosis (ICD) and 
Procedure (CPT) codes, Document metadata (e.g. provider)

– Unstructured

– Clinical documents, Radiology reports

– Features:

– Cross-patient search for cohort identification

– Graphical user interface for query construction

– Text search, concept search, application of filters

– Note review

– Term/concept highlighting, navigation, other concepts present

– Ability to save queries

– Input and export search results (lists of patients/encounters)

– Overnight re-indexing performance

– Owner:  Quality and Clinical Effectiveness Team



USNWR:  Kasai Procedure: Cohort Discovery

– How many unique patients received a Kasai procedure (ICD-9-CM codes 51.37, OR CPT code 47701) 
from your Pediatric GI program in 2011? 

– Querying by ICD-9 and CPT yielded 12 unique patients

– Querying by SNOMED concept yielded 1 additional patient

– Of this group, how many are considered a success (i.e., improvement total in bilirubin <10 mg/dL, no 
synthetic dysfunction, no surgical complications, and delayed need for liver transplant) in 2013 (i.e., two 
years after initial diagnosis)?

– Historically required tedious chart review

– Now able to search for concepts of liver transplant, surgical complications, and terms indicating failed Kasai 
procedure (“failed kasai”, “BAFK”) -> identified 4 patients



2014-2015:  Stanford Children’s Health
Venous Thromboembolus (VTE) Pilot

– Data 

– Addressed EMR conversion (Cerner to Epic) in 
May, 2014

– 750k encounters, 155k patients, ~1M notes

– Weekly batch ingestion update

– Business Owners: Quality and Clinical Effectiveness 
Team

– Challenge: Venous Thromboembolism (VTE)

– Hospital Acquired Condition (HAC), incidence 
about 4/1000 in pediatrics

– Difficult to identify for reporting, much less for 
mitigation and prevention

– Current process is inefficient, and lacks 
sensitivity



2016:  Healthcare Analytics Solution
CDHB Radiology Pilot

– Data

– 5 years of selected radiology reports (13601 
records)

– System features

– SNOMED CT ontology

– Seamless structured/free-text filter creation

– Cohort generation of reports with actionable 
findings

– Collaborative workflow

– Cohort assignment

– Computer assisted chart abstraction

– Cohort export for interoperability with other IT 
systems



Healthcare Analytics Solution
CDHB Radiology Pilot

– 13000+ reports “printed” to non-existent printer due to 
incorrect setup 

– Concern over non-acute ACR category 3 abnormalities

–Non-acute

–Require communication within days/weeks

–Possible morbidity/mortality if ignored

–eg aneurysm, malignancy

– Benefits

– Reliability

– Efficiency

– Transparency

– Risks

– Requires hypothesis driven use

– Dynamic accuracy

ACR category 3 abnormalities

Body

System

Term

General Neoplastic disease (Disorder)

Proliferation (Morphologic abnormality)

Aneurysm (Morphologic abnormality)

Stricture of artery (Disorder)

Lymphadenopathy (Disorder)

Tuberculosis (Disorder)

Chest Cardiomegaly (Disorder)

Lobar pneumonia (Disorder)

Collapse (Morphologic abnormality)

Interstitial Lung Disease (Disorder)

Abdomen Ascites (Disorder)

Splenomegaly (Disorder)

Upper urinary tract dilatation and obstruction

(Disorder)

Dilatation of ureter (Disorder)

Kidney stone (Disorder)

Calculus (Morphologic abnormality)

Malformation of urachus (Disorder)

Intestinal obstruction (Disorder)

Obstruction (Morphologic abnormality)

Polycystic Ovaries (Disorder)

Musculo-

Skeletal

Congenital skeletal dysplasia (Disorder)

… …



Lessons Learned
(a study in med-tech commercialization)

– Clearly defined use-case

– Clearly defined system user(s)

– Careful selection of available data sources / data elements

– Healthcare technology adoption issues

– Objective ROI

– Ownership and subject matter expertise at both vendor and client

– The importance of usability
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Data source / element selection  decision analysis

–CDHB Radiology Pilot

– address single use-case

– 1 data source, 16 data elements

–CDHB enterprise deployment in-process

– address specific 3 use-case templates

– assess broader reusability

– 7 data sources, 107 data elements



Future directions

– CDHB expansion

– Use cases

– Users

– Data source data element selection

– Knowledge capture



Selected references

– Pons E, Braun LM, Hunink MG, Kors JA. Natural Language Processing in Radiology: A Systematic 
Review. Radiology. 2016 May;279(2):329-43.

– Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, Rybicki FJ, Mitsouras D. Natural 
Language Processing Technologies in Radiology Research and Clinical Applications. 
Radiographics. 2016 Jan-Feb;36(1):176-91. 

– Kimia AA, Savova G, Landschaft A, Harper MB. An Introduction to Natural Language Processing: 
How You Can Get More From Those Electronic Notes You Are Generating. Pediatr Emerg Care. 2015 
Jul;31(7):536-41.

– Rink B, Roberts K, Harabagiu S, Scheuermann RH, Toomay S, Browning T, Bosler T, Peshock R. 
Extracting actionable findings of appendicitis from radiology reports using natural language 
processing. AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:221.

– Lakhani P, Kim W, Langlotz CP. Automated detection of critical results in radiology reports. J Digit 
Imaging. 2012 Feb;25(1):30-6.

– Larson PA, Berland LL, Griffith B, Kahn CE Jr, Liebscher LA. Actionable findings and the role of IT 
support: report of the ACR Actionable Reporting Work Group. J Am Coll Radiol. 2014 Jun;11(6):552-
8.



Acknowledgements – Thank you!

– HPE

– HP Labs, APJ Delivery/Engineering/Client teams

– Jaap Suermondt, Michael Grey, Alistair Melhuish, Matt Buchanan, Wilbur Tong, Yogesh Vohra, Faraz Rahman and others

– Stanford Children’s Health

– IT and analytics, Clinical Effectiveness, Quality Improvement

– Dale Gray, Nathan Wicke, Chris Longhurst, Lin Loh, Chelsea Nather, Katie Carpenter, Mari Campbell and others

– CDHB

– Radiology, Administrative, Information Services

– Sharyn MacDonald, Stan Wallace, Alice Earnshaw-Morris, Carolyn Gullery, Stella Ward and others

– MIT

– Physionet

– Roger Mark and others


