Orbis Semantic Annotations
Research project
Orbis Semantic Annotations

- Problem space: heterogeneous data sources
- Semantic Web Technology
- Demo Basic Annotations
- Architecture
- Demo reasoner
Heterogeneous Data Sources

• **Orbis: Electronic Patient Record of Agfa HealthCare**
 – Broad coverage of healthcare domain
 – Consisting of several modules
 • Each with their specific domain objects and data structures

• **Long history of legacy data**
 – Acquisition of multiple EPR’s in different countries
 – Availability of advanced form generator
 • Allowing hospitals to build their own clinical record.

• **Multiple data models**
 – Relational data model – ‘Static data model’
 – E.A.V data model – (Entity Attribute Value) ‘Generic data model’
 – Mixed
Heterogeneous Data Sources

- How to use those data coming from heterogeneous data sources for
 - Re-use
 - Exchange of data (import, export)
 - Exploring
 - Aggregate and analyze relevant clinical data
 - Clinical decision support
- Architecture allowing uniform and controlled (read-only) access to patient data.
 - By abstracting from physical data structures
- Providing a logic view of the physical data structures used by the single modules
Semantic Web Technology

• How can computers grab the semantics or meaning of data?
 – Approach one: make them so intelligent that they will be able to process the information about the world in its full complexity. E.g. Understand human language.
 – Approach two: Simplify the description of the world to a level that even stupid computers will be able to act ‘intelligently’ on it.

=> Semantic technology

• Semantic Web
 – Vision of WWW to have (part of) its data in this simplified form rather than plain human language
 – Evolving from Web of documents to Web of meaningfull data.
Semantic Web Technology

• Basic unit of knowledge = Triple
 – Fact expressed as a <Subject Predicate Object> triple
 • ‘Tarzan Loves Jane’
 • ‘Myocardial_infarction’ ‘is_treated_by’ ‘Perfusion_therapy’.
 – Statement with subject, verb and object
 – Something with a meaning connecting with a meaning to something else with a meaning
 – Intelligent
 • From Latin ‘Intelligere’ - inter + legare (to tie, bind, unite)
Semantic Web Technology

• As explicit meaning as possible:
 – Trying to be Unambiguous

 – Using URI: pointing to individual elements in the world
 • ‘http://www.ihtsdo.org/owlname#Myocardial_infarction’
 • ‘http://www.agfa.com/w3c/2009/Therapy#is_treated_by’
 • ‘http://www.ihtsdo.org/owlname#Perfusion_therapy’.

 – RDF Resource Description Framework
 • Express data in a formal way (triples of URI’s..)
 • Collection of statements, each with subject, verb and object.

 • Ultimately forming a **graph** of knowledge
Semantic Web Technology

- As explicit meaning as possible:
- **Ontologies** to fight ambiguity of concepts
 - Formalisation of a domain of discourse, enabling knowledge sharing
 - **RDF schema**
 - **This language permits declaration of a ontology**
 - rdfs:class, rdfs:subClass, rdfs:domain, rdfs:range

 - Rdfs:class = the class of all classes
 - Snomed concept
 - dfs:subclass = linking a class to its superclass
 - Snomed IS A hierarchy
 - rdfs:domain, rdfs:range = linking a property to its domain or range class

- Currently only expressed as free text in snomed CT guides
Semantic Web Technology

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix organism: <http://eulersharp.sourceforge.net/2003/03swap/organism#>.
@prefix human: <http://eulersharp.sourceforge.net/2003/03swap/human#>.

Classes:
human:Human a rdfs:Class.
human:Person
 a rdfs:Class;
 rdfs:subClassOf human:Human.
human:BiologicalGender a rdfs:Class.
human:male
 a rdfs:Class;
 a human:BiologicalGender.
human:female
 a rdfs:Class;
 a human:BiologicalGender.
human:intersexual
 a rdfs:Class;
 a human:BiologicalGender.

Properties:
human:hasBiologicalGender
 a rdf:Property;
 rdfs:domain human:Human;
 rdfs:range human:BiologicalGender.
Semantic Web Technology

RdfGraph
Semantic Web Technology

• Ontologies to fight ambiguity of concepts:
 – OWL
 • Extension of RDFS
 • permits declaring ontologies in a more expressive way than RDFS
 – Examples of OWL elements:
 • owl:equivalentClass
 – Snomed Fully defined!
 • owl:intersectionOf
 – Logical AND
 • owl:Restriction
 – Defines an unnamed class
 – This class defined by owl:onproperty and owl:someValuesFrom(/allValues From) combination
 • owl:onProperty
 • Owl:someValuesFrom
 – All individuals that are related by the onProperty to other individuals by at least …
Semantic Web Technology

```
:SCI_22298006 rdf:type owl:Class ;
  rdfs:label "Myocardial infarction (disorder)" .

owl:equivalentClass [ rdf:type owl:Class ;
  owl:intersectionOf ( :SCT_57809008
    owl:intersectionOf ( [ rdf:type owl:Restriction ;
      owl:onProperty :RoleGroup ;
      owl:someValuesFrom [ rdf:type owl:Class ;
        owl:intersectionOf ( [ rdf:type owl:Restriction ;
          owl:onProperty :SCT_116676008 ;
          owl:someValuesFrom :SCT_55641003
          ]
        [ rdf:type owl:Restriction ;
          owl:onProperty :SCT_363698007 ;
          owl:someValuesFrom :SCT_74281007
        ]
      ]
    )
  )
] .
```
Semantic Web Technology

• Inferencing by reasoning engine
 – Deriving new knowledge out of facts and rules
 – Making implicit knowledge explicit

• A rule is a statement with a logical implication
 – Consist of a premise and a conclusion
 • which is implicated if the condition in the premise is fulfilled

• RDFS, OWL properties entail new knowledge!
 – Example:

 \[\{X \text{ a } Y. \ Y \text{ rdfs:subClassOf } Z\} \Rightarrow \{X \text{ a } Z\}. \]

 \[\{P \text{ a } \text{owl:TransitiveProperty}. \ S \ P \ X. \ X \ P \ O.\} \Rightarrow \{S \ P \ O\}. \]

 http://eulersharp.sourceforge.net/2003/03swap/eye-owl2.html

• Snomed Classifier = reasoner
Semantic Web Technology

Semantic Web Stack:

- User Interface & applications
- Trust
- Proof
- Unifying Logic
- Query: SPARQL
- ontology: OWL
- Rules: RIF
- RDF-S
- Data interchange: RDF
- XML
- URI
- Unicode
Semantic Annotations

• How did we leverage the technology provided by Semantic Web?
• First step: Annotation
 – Providing additional meta data for Orbis structures so that this data can be retrieved and processed by semantic layer
 – Basically an Orbis data element is tagged with to a concept of a external terminology.
 • Snomed CT
 – An ontology, close to the structures found in patient record
 • Static data
 • Generic data: generated on the fly
Semantic Annotations

- **Second step: Retrieving data**
 - Using SPARQL and SPARQL endpoint

- **SPARQL**
 - *SPARQL Protocol and RDF Query Language*
 - Query language for RDF, similar to SQL
 - Triple facts are extracted from Orbis database into a RDF graph
 - Resulting in single logic view of the physical data structures

- **SPARQL Endpoints** allow querying existing data with SPARQL
 - Using standard HTTP protocol
 - For Orbis, a SPARQL endpoint has been defined
SPARQL Basic Query

Data:

@prefix
 http://example.org#> .
:John :age 25.
:Bill :age 30.
:Mary :age 24.
:John :loves :Mary.
:Bill :loves :Jane.

Query:

@prefix: http://example.org#.

SELECT ?girl ?age
WHERE
 ?girl :age ?age }

Result:

girl age
:Mary 24
:Jane 26
Annotating in Orbis

- Tagging data with explicit meaning by linking to concepts of clinical terminology (SNOMED CT)

- By filling in data in Orbis patient file, the concept of the terminology transforms from some theoretical representation of a clinical notion to an actual instance within the patient record.

- In other words, by doing so we are asserting facts, creating behind the scene triples.
 - patientX has_weight weightX
 - weightX has_value 83.
 - weightX is_measured_in Kg.
 - weightX has_timestamp 2010-09-09
 - ...

- Which we can retrieve by SPARQL
 - Where ever this weight has been filled in.
Annotating in Orbis

- Demo:
 - Annotating in Nursing form Body weight
 - Annotation in Lab Ordering Body weight
 - lab systems ask for additional clinical observations for some lab tests.
 - Re-use of data coming from different data sources
 - Pre-filling the Lab observation with values from Nursing.
Architecture

- SPARQL engine as foundation layer

- An ORBIS Ontology defines the object model SPARQL queries can operate on.
 - DDO: Data definition ontology
 - Ontology is close to the structures found in patient record
Architecture

- **Semantic Query Service**
 - Works on top of ORBIS SPARQL endpoint
 - Maps Snomed Concepts to elements of ORBIS ontology

- **Concept Mapping Service**
 - Maps Snomed concepts to one or more Sparql queries.
 - SPARQL using ‘basic’ ORBIS ontology

- **Concept Query Service**
 - Retrieves data by executing SPARQL queries on the endpoint.
Architecture

- Layered approach
Demo Reasoner

- **How to handle**
 - Yes – No – Don’t know
 - History of
 - Family history of

- **Embed in special construct “Clinical situation with explicit context”**
 - Facilitates recording in patient file
 - Additional information can be specified
 - to denote temporal position (in the past, now,…),
 - explicit presence or absence of this concept
 - modalities such as risk, planning state
 - subject to whom the artifact applies to (patient himself, family,…).
 - All concepts not defined in this ‘situation with explicit context’ and used in a clinical record are assumed to have weak defaults
 - meaning applying to the current patient, being present and current.
Demo reasoner

Clinical finding absent

- Situation
- Group
 - Associated finding
 - Finding context
 - Temporal context
 - Subject relationship context
 - Subject of record
 - Known absent
 - Current or specified time
 - <finding>
Demo Reasoner

- SPARQL query to retrieve data
- Mapping file Snomed
- Rule to define situation with explicit context

- On selecting ‘Cardiogenic shock’ in form, I can retrieve RDF graph stating this patient has clinical situation