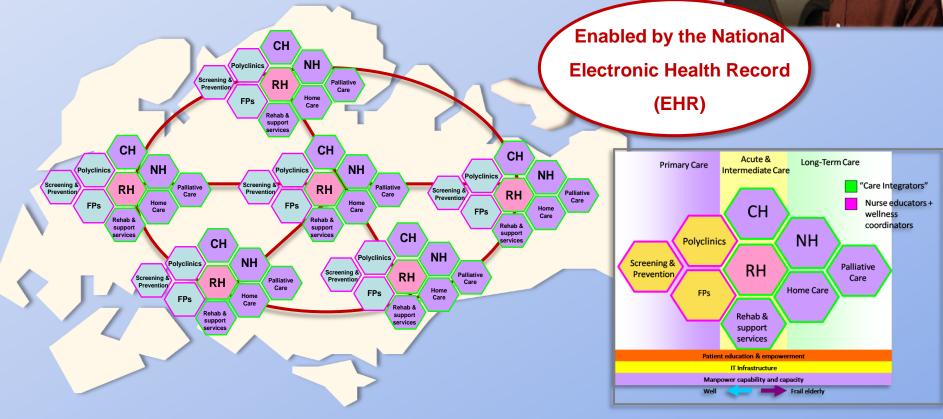
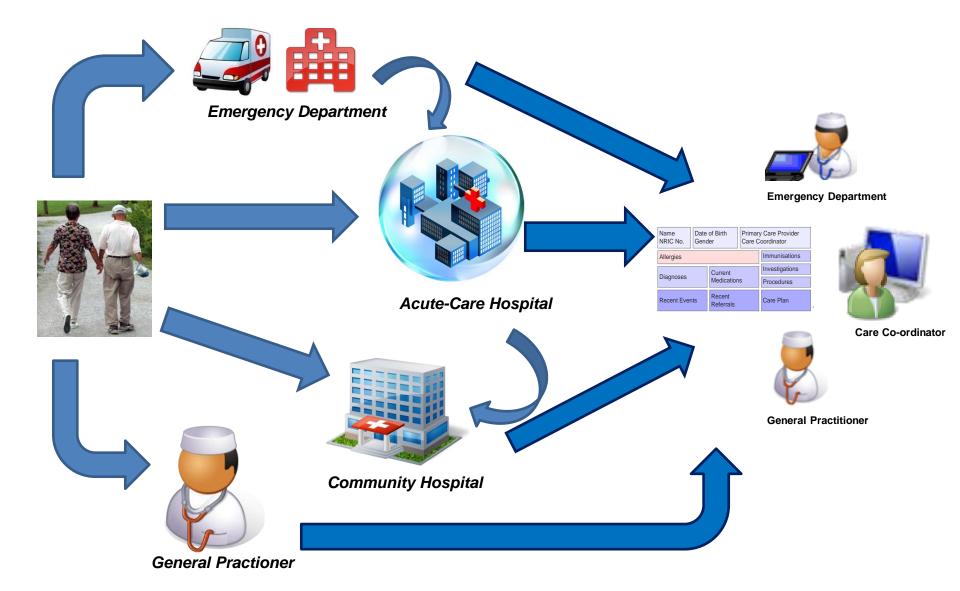
The Logical Model Designer (LMD) – Binding Information Models to Terminology

Linda Bird, Hendry Wijaya, Teck Wei Chin - MOH Holdings Balazs Banfai – B2i

25th October 2012 (10:45 – 11:30)


- Background
- Logical Information Model
- LMD Tooling
- Terminology Binding
- Demonstration
- Platform Software Architecture
- Project Timeline

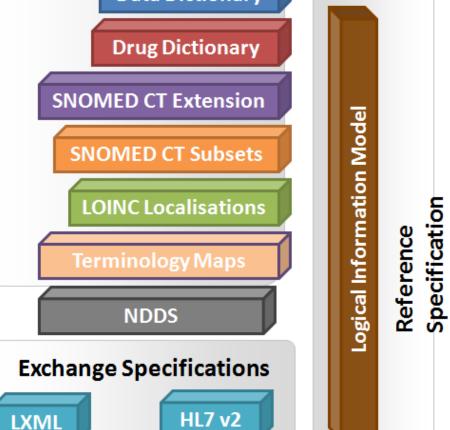
Healthcare landscape of the future



Strategic vision of patients moving seamlessly across the healthcare system, receiving coordinated patient-centric care at the most appropriate settings.

Sharing Information Across Singapore

MOH HOLDINGS

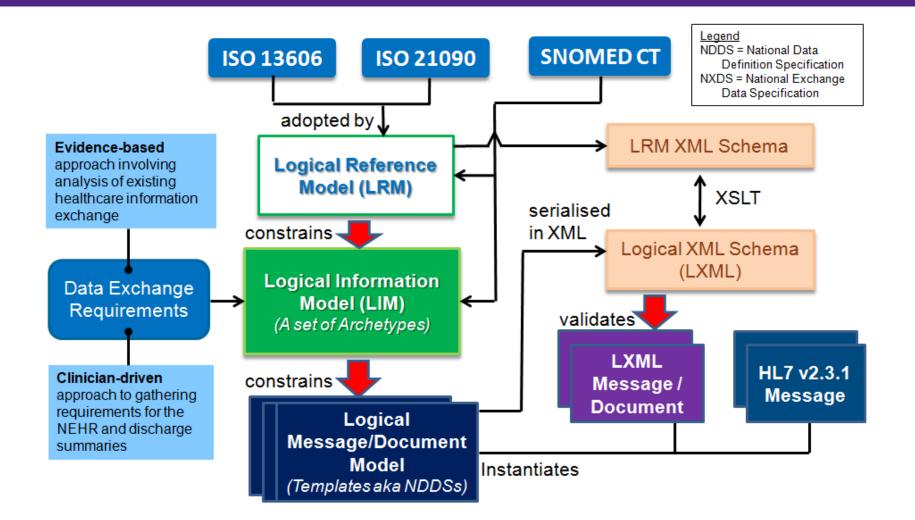

- **Messaging** safe exchange of transactional data
- **Document Exchange** safe exchange of documents
- **Persistence** storing data in clinical systems
- Interoperability ability to interpret semantics of data received from other clinical systems and store in native data stores
- Querying & Analytics over multiple heterogeneous sources
- Decision Support ability to define and apply decision support rules over shared data

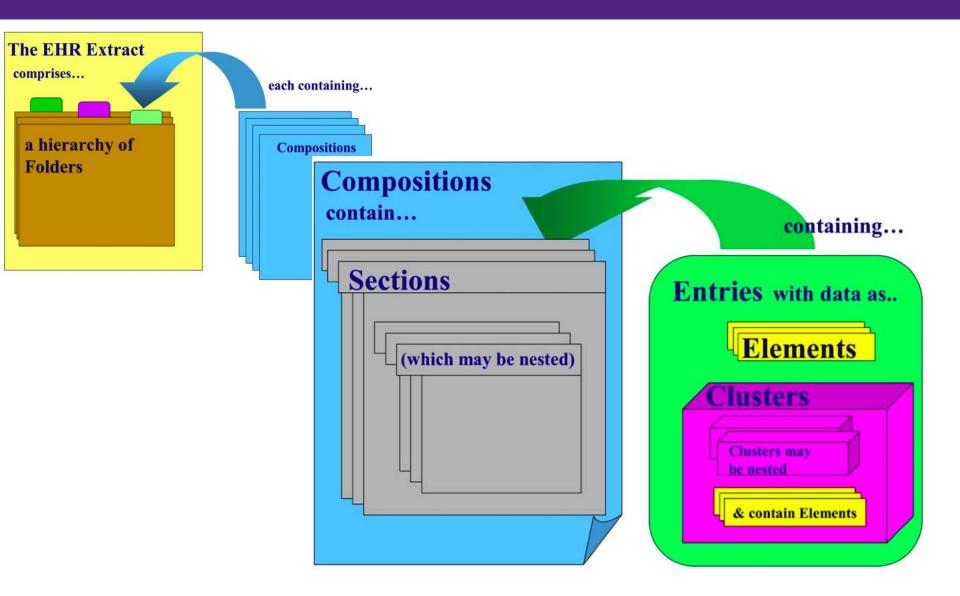
MOHHoldings Standards Products MOHHOLDINGS

- Diagnosis SNOMED CT*
- Drugs Singapore Drug Dictionary (SDD)
- Allergic Reactions SNOMED CT*
- Allergens SNOMED CT* + SDD
- Laboratory Results LOINC (TBD)
- Data Dictionary MOHH Data Dictionary
- Procedures TBD
- Reason for visit SNOMED CT*
- Symptoms and Problems SNOMED CT*
- Laboratory Reports Smart SNOMED CT*
- Laboratory Orders SNOMED CT*
- Radiology Orders SNOMED CT*

Terminology Products

SNOMED CT* includes Singapore Extension


Logical Information Model


- 1. A common, implementation-independent model of all shared healthcare information in Singapore.
- 2. A 'single source of truth' that articulates our clinician and business information requirements
- 3. Implementation artefacts are generated from common semantics

LIM Development Process

Logical Reference Model

MOH HOLDINGS

Archetypes

- Reusable clinical models
- Defined as a set of constraints on the reference model
- For example:
 - Observation, Diagnosis, Alert, Adverse Reaction, Investigation Result
- Can be further constrained e.g. Heart rate, Microbiology Result

Templates

- Group together a set of archetypes for a specific use case
- Apply additional use-case specific constraints
- Can be used to standardise the elements, constraints and terminology for a given message type, user interface etc
- For example:
 - Discharge summary, Investigation Report, Prescription

Example Model

MOHH-LIM-ENTRY.INVESTIGATION.v0.2.0.lom

MOHH-LIM-CD.CD.CWE.v0.0.0.lom

Archetype Editor Hierarchy Complex Node Information Provider UID: 948f5ea3-ce33-41cb-abda-6c70e2283e39 Meaning Synthesised Flag Name: value Policy Identifiers Node ID: Original System Audit Act Identifier Defining Information Uncertainty Flag Base node: A other_participation Performing Facility ► 🖉 Reference model attribute: value : ANY ÷ Þ 🅢 **Reference Facility** Reference model type: CD Consultant-In-Charge ÷ Data Type Reporting Clinician Flavour: CD.CWE 8 ÷ Other Participation 🔏 item - Constraints Investigation Item (Procedure Design Pattern) A other_participation Min. cardinality: 1 Cardinality Archetype_id Max. cardinality: 11 🕨 🔏 name Assumed value: A orig_parent_ref Mainton Strategy Policy_id Default value: Sensitivity Fixed value: 🕨 🔏 link original_system_audit Other constraints rc_id Type Description A translation Add... a part Business Data Investigation Name Element Name Remove Archetype_id 🕨 🔏 name Edit... A orig_parent_ref Mainton Strategy Policy_id Sensitivity + Descriptive Information 🕨 🔏 link - Values original_system_audit rc_id Constructor binding: A translation Value Domain Market Strength National Value Domain Value Simple \$ Investigation Name ▶ 🔏 source Additional Description

MOH HOLDINGS

_

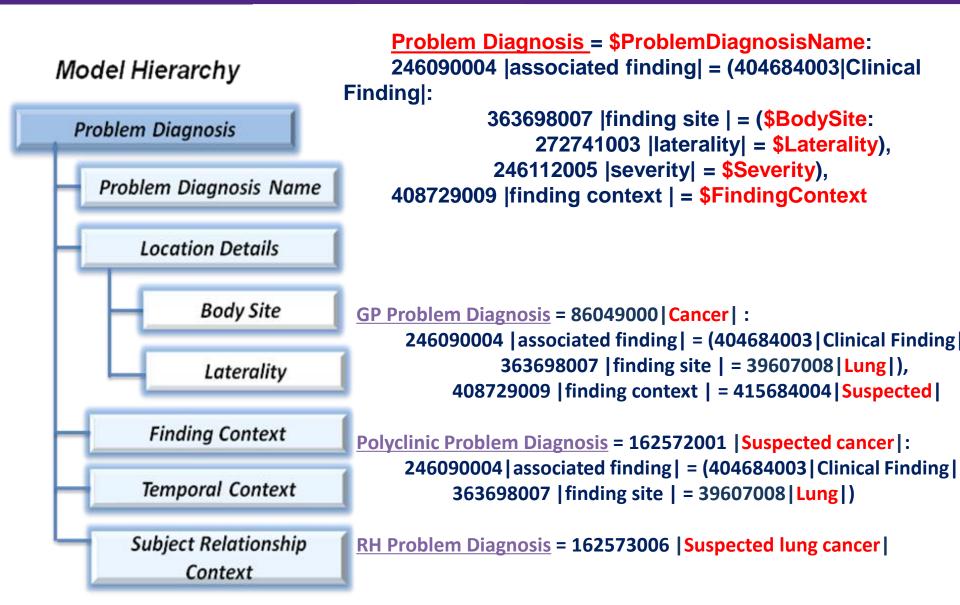
Terminology Challenges

Example: "Suspected Lung Cancer"

General Practice	Polyclinic 🛛 🛛	Restructured Hospital 🔀
Problem/Dx	Problem/Diagnosis	
Prob/Dx: Cancer		Diagnosis
Body Site: Lung	Prob/Dx Name: Suspected cancer	Name:
Status:		Name.
 Suspected 	Body Site:	Suspected lung cancer
○ Confirmed	Lung	
○ Not found		
OK Cancel	OK Cancel	OK Cancel

We need a consistent semantic representation.

IsoSemantic Models (example instances)


MOHHOLDINGS

e.g. "Suspected Lung Cancer"

Model Hierarchy	General Practice	Polyclinic	Hospital
Problem Diagnosis			
Problem Diagnosis Name	Cancer	Suspected Cancer	Suspected Lung Cancer
Location Details			
Body Site	Lung	Lung	
Laterality			
Finding Context	Suspected		
Temporal Context			
Subject Relationship Context			

IsoSemantic Models (constructor binding)

Benefits of the LIM

- Common model
 - shared healthcare information in Singapore
- Common queries
 - Provides a common vocabulary for querying multiple data sources
- Common meaning
 - Each clinical meaning is represented just once and reused many times
- Consistent terminology
 - National reference terminology bound to a clinical meaning
- o Implementation independent
 - Information model independent of exchange format and proprietary information models
- Machine processable model
 - Allows information to be defined once, and used many times (consistently)
- Conformance Testing
 - Enables the automation of Conformance Testing to ensure quality of data

Logical Model Designer

Т

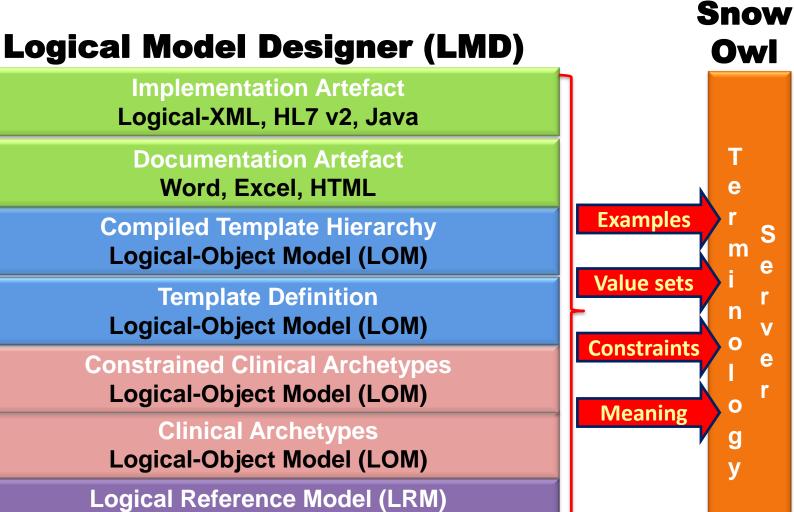
е

m

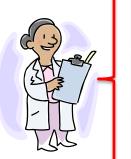
S

e

r

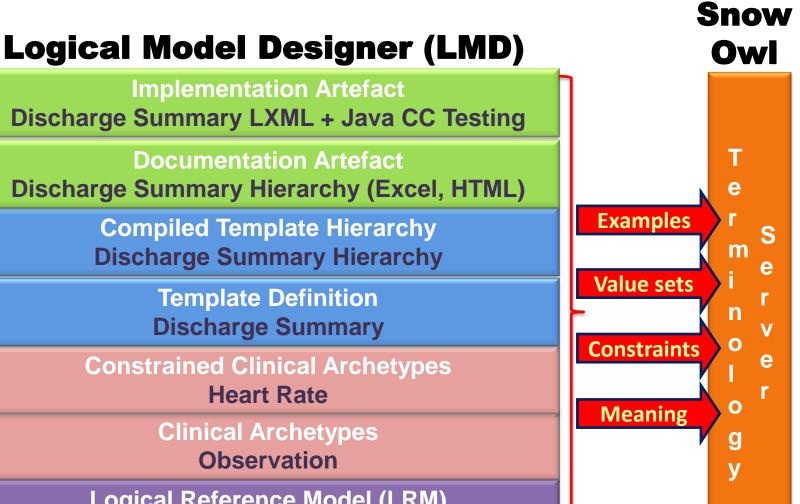

V

е


r

g

Y


ISO-13606 + ISO-21090

Clinician Verificatioh

Logical Model Designer

Logical Reference Model (LRM) Composition, Entry, Cluster, Element

Clinician Verification

Types of Terminology Binding

- Value set binding
 - *National*: For national queries over heterogeneous data
 - Local: For generating conformance/compliance software for messages populated using local value sets (mapped to national)
- Constraint binding
 - Assumed, fixed and default values
 - OCL and ESCG constraints
- Semantic binding
 - Enables querying data using more general or specific meanings
 - Enables searching models, and identifying semantic overlap
- Relationship bindings
 - Defines meaning of relationship between parent to child node
 - Used to construct design pattern bindings (aka constructor bindings)
- Design pattern bindings (aka 'constructor bindings')
 - Extended compositional grammar expression with path-based slots
 - Used to normalise data that may either be precoordinated or postcoordinated in the structure, into a canonical form

Terminology Binding Syntax

- Uniform Resource Identifier (URI) standard:
 - Simple and extensible means for identifying a resource (ftp:, mailto:, news:, etc.), in this case terminology artefacts
 - Logical identifier of a resource, without specifying the physical location and the access mechanism
 - Both human and machine readable, with the syntax:

<scheme name>:<hierarchical part>[?<query>][#<fragment>]

- Obtaining a representation of the resource is done by Resolvers
- Scheme for terminology binding: terminology:<code system id>[:version]?<query type>= <query expression>[&<extension key>=extensionvalue]*
- SNOMED CT query types:
 - concept, conceptlist, refset, refsetlist, escg, ocl

Terminology Binding Examples

terminology:<code system id>[:version]?<query type>= <query
expression>[&<extension key>=extensionvalue]*

Examples:

SNOMED CT

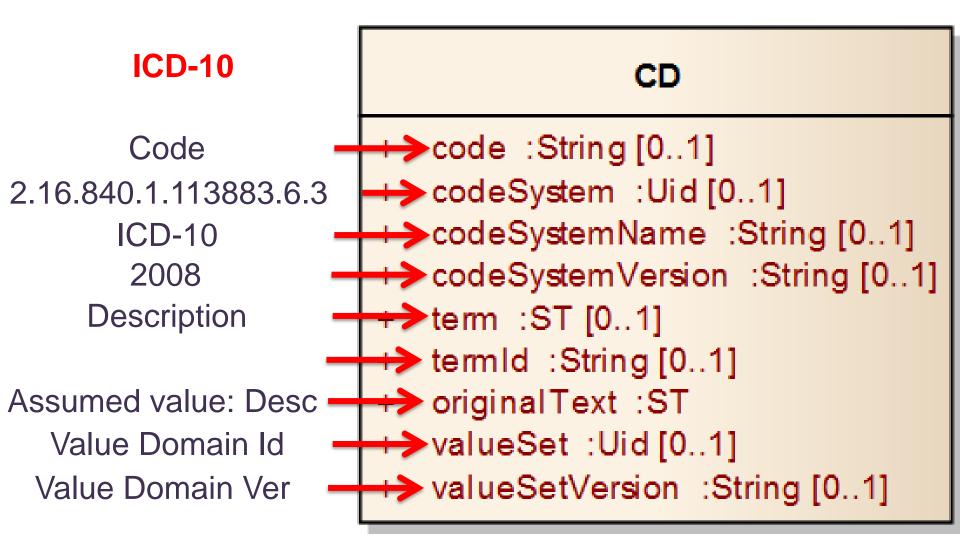
- o terminology:2.16.840.1.113883.6.96:20110123?concept=284296006
- terminology:2.16.840.1.113883.6.96:20110123?refset=284296007&s
 cope=A01324
- o terminology:2.16.840.1.113883.6.96:20110123?escg=<<284296006</p>

ATC

• Terminology:2.16.840.1.113883.6.3:20110123?code=A01

Singapore Data Dictionary

o terminology:data_dictionary_id?value_domain_id#code


Binding Terminology to a Coded Datatype

SNOMED CT	CD
Concept Id -	→code :String[01]
2.16.840.1.113883.6.96	→codeSystem :Uid [01]
SNOMED CT -	codeSystemName :String [01]
20110701 -	codeSystemVersion :String [01]
Preferred Term -	+>term :ST [01]
Description Id -	termId :String[01]
Assumed value: PT	+>originalText :ST
RefSet Id -	→valueSet :Uid [01]
RefSetVersion -	→valueSetVersion :String [01]

Binding Terminology to a Coded Datatype

Binding Terminology to a Coded Datatype

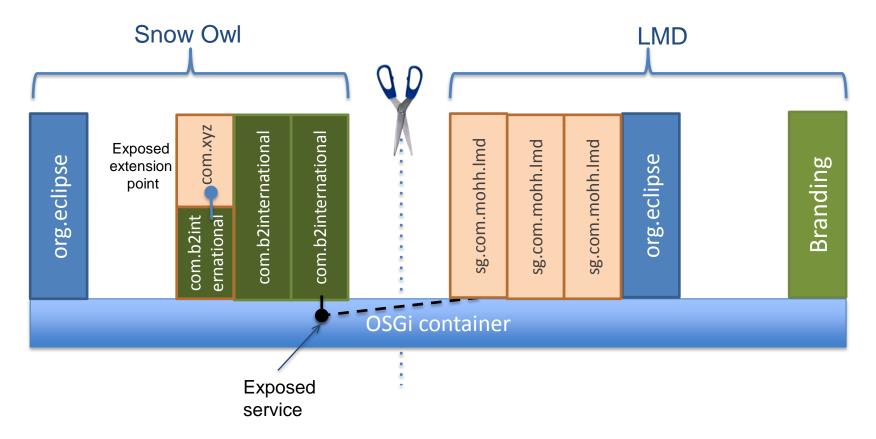
DD Value Domain	CD
Code -	→code :String[01]
DD OID	→codeSystem :Uid [01]
MOH Data Dictionary -	codeSystemName :String [01]
20120101 -	codeSystemVersion :String [01]
Description -	+>term :ST [01]
	termId :String[01]
Assumed value: Desc -	↔ originalText :ST
Value Domain Id 🗕	→valueSet :Uid [01]
Value Domain Ver –	→ valueSetVersion :String [01]

Demonstration of LMD Tooling

- Snow Owl
 - Reference sets and Extension concepts
- Logical Reference Model (LRM)
 - Editable view
- Archetype Observation ENTRY
 - Add semantic and value domain bindings
 - Node meaning, relationship meaning, constraint & constructor bindings
- Constrained archetype Heart rate ENTRY
 - Add semantic and value domain bindings
 - Confirm subsumption validation
- Compile template Discharge summary (with heart rate)
 - Fill slot with heart rate archetype, and
- Model search
 - Search models using semantic bindings

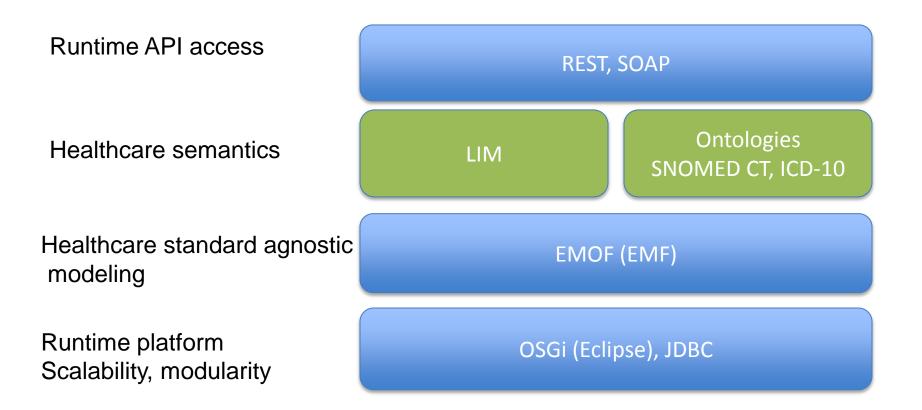
Platform Software Architecture

- Built on the seasoned Eclipse tooling platform with wide industry adoption
 - Composed of bundles running within an OSGi (Eclipse) container
 - Bundles can be deployed depending the product definition (possible for both client and server side)


MOH HOLDINGS

- Help and branding information are in separate bundles
- Utilizes the services provided by the Snow Owl terminology platform
- Core domain objects are modeled via standard EMOF as opposed to be hard-coded

Platform Software Architecture



MOH HOLDINGS

Platform Standards Stack

Project Timeline

o 2012 April – LMD Project kick-off

V0.4: 2012 November 3 – current release

- Existing MOHH LIM artefacts import
- Modelling artefacts browsing, searching and editing capabilities (archetype, constrained archetype, template, template hierarchy)
- Validation framework
- Terminology binding
- Schema and instance generation
- V0.9: 2013 June 3 Final release
 - Instance conformance & compliance
 - Mapping support
 - Logical query language support
 - Publication
 - ADL Support