Leveraging biomedical texts in Spanish for drug repurposing, interaction and discovery: normalization of pharmacological substances and chemical compounds to SNOMED CT

Poster prepared by:

Eulàlia Farré Maduell | Barcelona Supercomputing Center Salvador Lima López | Barcelona Supercomputing Center Martin Krallinger | Barcelona Supercomputing Center

Introduction

Methods

Results

Discussion

snomedexpo.org

Motivation

Medicines are essential to treat, prevent and diagnose symptoms and diseases, starting before birth.

However, a large proportion of the elderly and people with comorbidities are currently affected by *polypharmacy*, the simultaneous prescription and use of (too) many medications. Little is known about the interaction of three or more drugs, particularly when metabolization and elimination of drugs are affected (i.e., kidney and liver disease, elderly metabolism, and other).

On the other hand, we lack evidence for drug efficacy when faced with new diseases like COVID-19, and little funds address treatment for orphan diseases like rare congenital metabolic disorders and sleeping sickness.

Electronic health records and biomedical literature contain information that can resolve some of these issues. The recognition and normalisation of pharmaceutical drugs/chemical entities is a critical step toward the subsequent detection of relations with other biomedically relevant entities such as genes/proteins, diseases, adverse reactions and unexpected beneficial effects.

2 Introduction

PharmaCoNER Gold Standard

- PharmaCoNER is the first resource for detecting chemical, drug, and gene/protein entities in Spanish medical documents.
- 1,000 clinical cases from multiple specialties manually annotated and normalized by experts.
- Most mentions normalized to SNOMED CT and some to CHEBI.

Web: https://temu.bsc.es/pharmaconer/
Dataset: https://doi.org/10.5281/zenodo.4270157
Guidelines: https://doi.org/10.5281/zenodo.3763276

Citation: González Aguirre et al, Pharmaconer: Pharmacological substances, compounds and proteins named entity recognition track". In: Proceedings of The 5th Workshop on BioNLP Open Shared Tasks. 2019, pp. 1–10

Poster prepared by:
Eulàlia Farré Maduell | Barcelona Supercomputing Center
Salvador Lima López | Barcelona Supercomputing Center
Martin Krallinger | Barcelona Supercomputing Center

Introduction

Methods

Results

Discussion

Corpus Annotation

- Manually annotated by domain experts.
- Annotation schema based on previous successful efforts in English: CHEMDNER and BioCreative GPRO track.
- 34 pages annotation guidelines adapted to Spanish language and domain.
- Corpus consistency analysis using Inter-annotator Agreement (IAA): 93%
- Four entity types:
 - NORMALIZABLES: chemicals that can be manually normalized to a unique concept identifier (primarily SNOMED CT).
- NON_NORMALIZABLES: chemicals that could not be assigned a unique concept identifier.
- PROTEINS: proteins and genes, including peptides, peptide hormones and antibodies.
- UNCLEAR: general substance class mentions of clinical relevance (e.g. pharmaceutical formulations, vaccines, some predefined substances like alcohol, tobacco or gluten).

Mention Normalization

- Most mentions were normalized to SNOMED CT, with a small subset of them being normalized to CHEBI, a dictionary of small chemical compounds.
- SNOMED's "substance" category was the most used, followed by "biological/pharmaceutical product"

"albendazol" → SCTID: 387558006 | Albendazole (substance) |

• Some generic/commercial drug names, as well as some proteins, had to be normalized to their family name:

| "adriamycin" (commercial name, not in SNOMED as is) → SCTID: 372817009 | Doxorubicin (substance) |

| "botox" (not in SNOMED as is) → 11894001 |Clostridium botulinum toxin (substance)|

 CHEBI was used mostly for general chemical groups and drugs with chemical names in their structure which weren't part of SNOMED:

| "6-metil-Prednisolone" (not in SNOMED)→ CHEBI:6888

 Some very specific mentions could not be found in neither terminology, so they had to be assigned the placeholder NOCODE.

SNOMED CT EXPO 2022

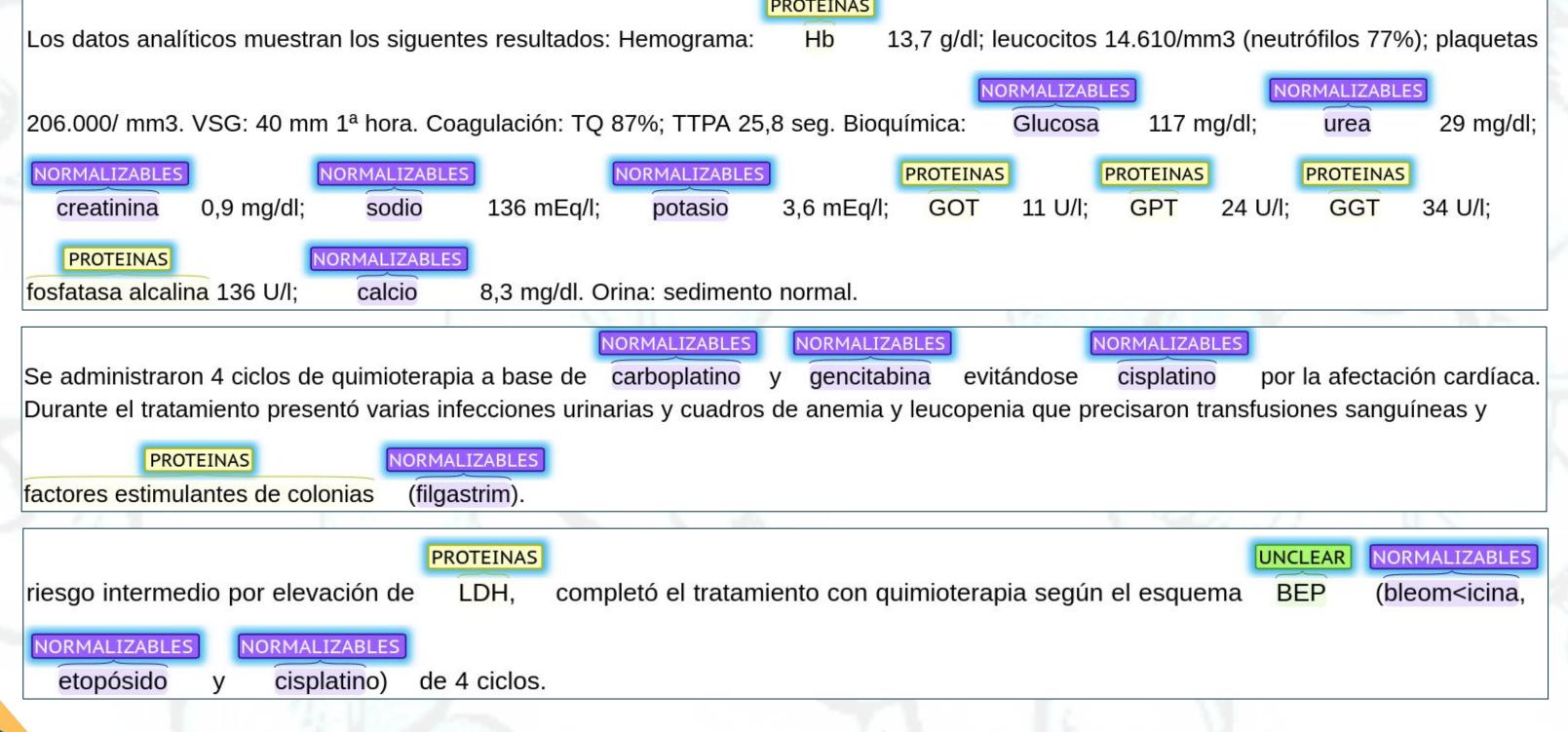
Sept 29-30, 2022 X Lisbon, Portugal

Leveraging biomedical texts in Spanish for drug repurposing, interaction and discovery: normalization of pharmacological substances and chemical compounds to SNOMED CT

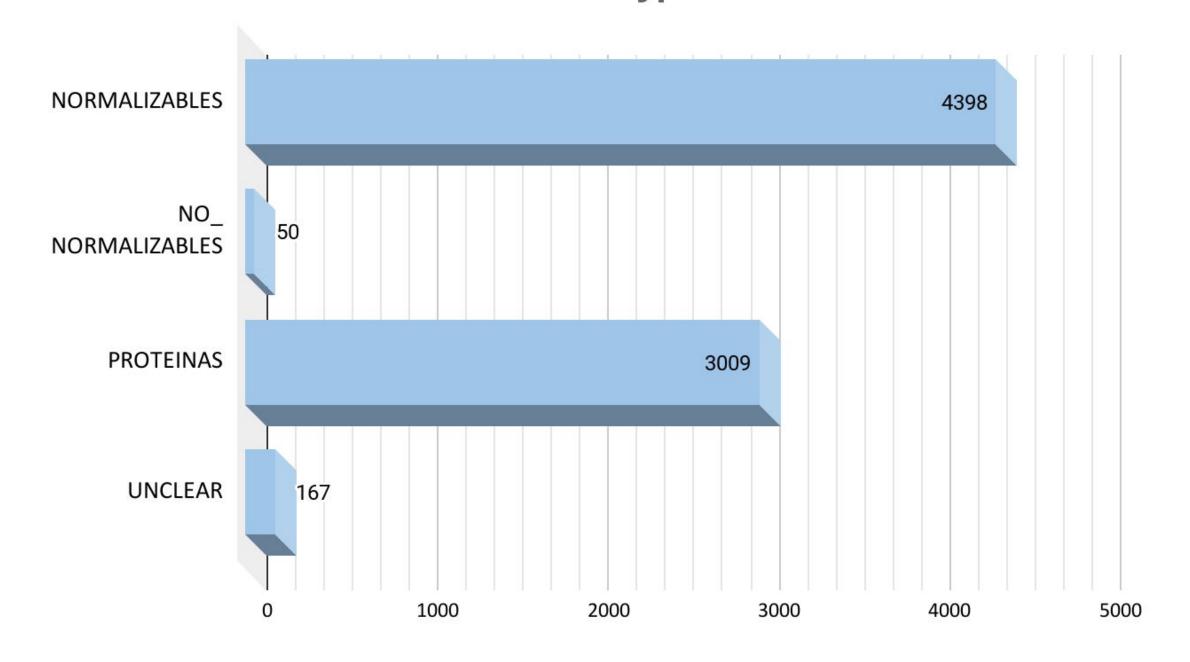
Poster prepared by: Eulàlia Farré Maduell | Barcelona Supercomputing Center Salvador Lima López | Barcelona Supercomputing Center Martin Krallinger | Barcelona Supercomputing Center

Introduction

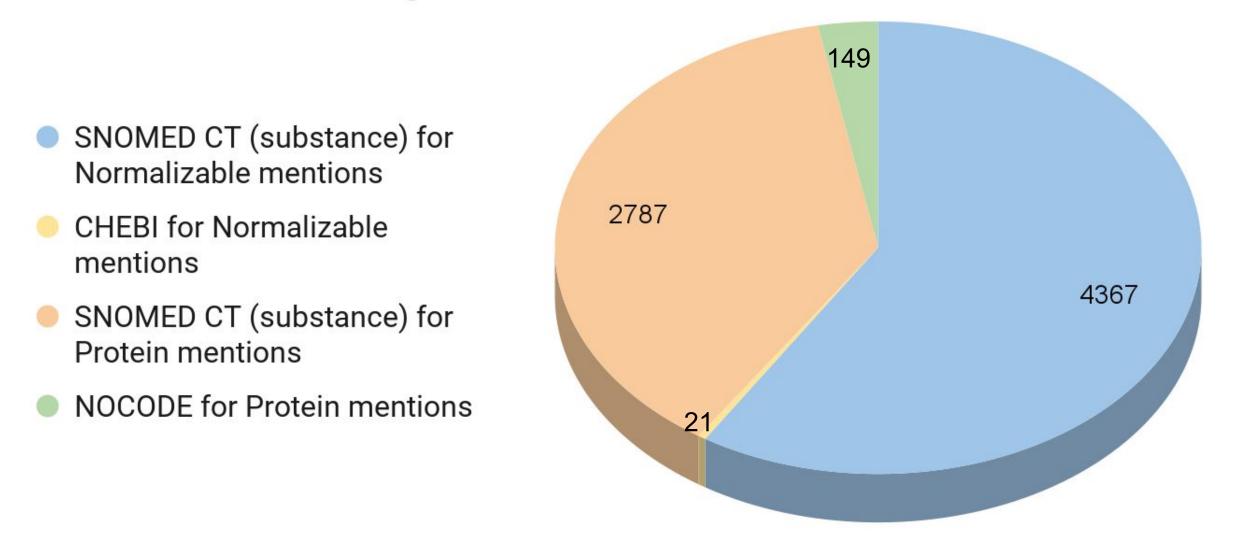
Methods


Results

Discussion


Corpus Statistics

- 1,000 clinical cases with a total of 7,624 annotations.
- Most annotations correspond to the classes NORMALISABLES and PROTEINS.
- 7,266 mentions (around 95%) normalized to SNOMED CT.
- 29 mentions normalized to CHEBI.
- 329 mentions could not be normalized (NOCODE).


Some annotation examples:

PharmaCoNER Mention Type Distribution

Entity Normalization Statistics

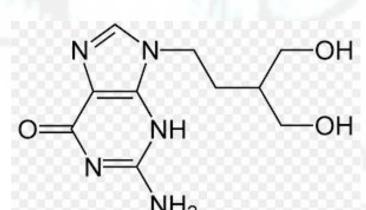
Leveraging biomedical texts in Spanish for drug repurposing, interaction and discovery: normalization of pharmacological substances and chemical compounds to SNOMED CT

Poster prepared by: Eulàlia Farré Maduell | Barcelona Supercomputing Center Salvador Lima López | Barcelona Supercomputing Center | Barcelona Supercomputing Center Martin Krallinger

Introduction

Methods

Results


Discussion

- SNOMED CT is overall a valid ontology for pharmaceutical compounds and substances, since it was able to provide a code for a majority of our mentions.
- Even then, there are some gaps for very specific content that can be closed using specialized resources like CHEBI.
- SNOMED CT presents the advantage of containing many other concepts related to medicines, for instance, disorders, findings and events.

Conclusions

- Specialized resources in Spanish are needed to increase the usefulness of text mining tools in the biomedical domain.
- PharmaCoNER can be used to train and evaluate automatic systems that detect chemicals, proteins and genes in Spanish and normalize them to SNOMED CT.

Future Directions

- Relation Extraction: chemical compounds and pharmacological substances should be related to symptoms, diseases and their polarities (if that symptom or disease means improvement or worsening).
- Information discovery: results should also aim at drug repurposing and discovery, in particular toward orphan diseases.

- Special thanks to the PharmaCoNER original authors: Aitor Gonzalez Agirre, Ander Intxaurrondo and Obdulia Rabal
- PharmaCoNER was promoted through the collaboration between the Spanish Plan for the Advancement of Language Technology (Plan TL) and the BSC/CNIO. ePosters sponsored by

Acknowledgements

SNOMED CT Sept 29-30, 2022 🗶 Lisbon, Portugal

