
Report on implementing and extending the SNOMED CT

Diagramming Guideline using Graphviz.
Dr. Edward Cheetham | NHS Digital, UK

ePosters sponsored by:

Diagram

variants 3

and

Conclusions

Diagram

variants 2

Methods 2

and

Diagram

variants 1

Introduction

and

Methods 1

MethodsIntroduction
The SNOMED CT Diagramming guideline [1] ('the guideline') "...defines a
recommended form for diagrams representing SNOMED CT concepts...". Such
diagrams are an established feature of SNOMED CT browsers, publications and
presentations. The guideline currently includes diagram element templates for a
number of desktop applications.

Graphviz [2] is open-source graph visualization software. It is used extensively in
plugins for many development and analysis environments, and bindings to
multiple languages have been produced [3].

SNOMED CT users may wish to take advantage of Graphviz's features, and its
use to generate graphs of ancestor and subtype relations is relatively
straightforward. Using the same technology to replicate individual concept
definition diagram elements and their layout is more challenging, however doing
so enables a single diagramming technology to support the production of more
complex yet consistent views of SNOMED CT data.

While Graphviz can specify the diagram elements as well as their combination and
layout rules, all but the simplest ancestor and subtype diagrams can require
considerable data pre-processing (e.g. [5]).

This ePoster describes how the individual elements of the guideline can be
represented using Graphviz (to complement the current guideline templates) and
shows how an approximation to the concept definition layout can be achieved.
Basic element features are then reused in several Graphviz-generated diagram
variants. It is intended that the examples presented will assist others wishing to
apply Graphviz to SNOMED CT, serve as an inspiration for diagram variant ideas,
and be considered by the SNOMED CT community for future versions of the
guideline if felt worthwhile.

Concept definition diagram elements

Graphviz layout programs take, as input, instructions using the 'dot' syntax [4].
This syntax is used to define the properties of elements and how they are
combined.

Fig 1: dot syntax and output for basic concept and attribute

classes

Fig 2: dot syntax and output for

relational operator, conjunction

and group elements.

Figures 1 and 2
show how the
individual elements
specified in section
4 of the guideline
can be
represented using
the dot syntax and
subsequently
rendered.

Combination and layout

Some Graphviz layout algorithms allow
absolute specification of position, however
the work presented in this ePoster uses
automatic graph layout features (mostly
using the ‘dot’ layout engine, but also ‘fdp’
and ‘patchwork’ for specific variants).

Automatic layouts risk deviation from the guideline form, but benefit from
allowing experimentation with more complex definition diagrams, combination
of concept definitions and related graphs, and the application of additional
Graphviz features to SNOMED CT data.

Report on implementing and extending the SNOMED CT

Diagramming Guideline using Graphviz.
Dr. Edward Cheetham | NHS Digital, UK

ePosters sponsored by:

Diagram

variants 3

and

Conclusions

Diagram

variants 2

Methods 2

and

Diagram

variants 1

Introduction

and

Methods 1

Methods Diagram  creates a clear layout, but
there is scope for improvement. In

Diagram  we see the focus concept now
sitting above the relational operator (by
adding constraint=false to this
relationship ⓐ) and relationship targets
positioned in-line and then below each
conjunction node (by adding a weight=50
entry to each ‘top’ relationship ⓑ). It is

noticeable (at ⓒ in Diagram ) that
multiple edges passing between
conjunctions and their targets run parallel.
This becomes less acceptable as edge
numbers increase (e.g. multiple parents,
multiple grouped roles) but can be
addressed as shown in Diagram  (at ⓓ).
Multiple edges are merged at build time,
and joined through intermediate nodes.
These are represented using tiny
shape=circle or shape=point nodes,
aligned using {rank=same; ...}
constraints, and minor drifts in layout
managed with invisible edges (at the
bottoms of groups) and by explicitly
naming port positions by compass point
assignments (esp. ‘:sw’).

In addition to the
nodes shown in
figures 1 and 2,
Graphviz diagrams
also represent edges.
Figure 3 shows
examples of edges
relevant to basic
concept diagrams as
specified in the
guideline.Figure 3: dot syntax and output for basic edges joining

diagram elements (edge rows in bold)

Figure 4: Sample diagram as shown

in the SNOMED CT Diagramming

guideline

Concept definition diagrams

Figure 4 shows an example concept
definition diagram from the guideline,
using several of the node and edge
elements already introduced. Figure 5
shows a sequence of Graphviz diagrams
that attempt to emulate the layout seen
in Figure 4, introducing features that
progressively improve the similarities.

Diagram  includes the splines=ortho
and rankdir=LR attributes. These
produce right angled (rather than gently
curved) edges, and set the edges to flow
from left to right.

Diagram  is less satisfactory as a guideline-conformant concept definition
diagram, however the approach used is topologically comparable and is well-
suited for more complex diagrams involving multiple focus concepts and nested
definitions (such as Figure 6, diagram and Figure 7).

Note: space limits prevent inclusion of full dot files, but complete examples
corresponding to those in the ePoster can be found in the Gist at reference [6]

Diagram variants

rankdir=LR and splines=ortho

rankdir=LR and splines=ortho

rankdir=LR and splines=ortho

Fig 5: Graphviz-based concept

definition variants (details in text)







ⓐ

ⓑ

ⓑ

ⓒ

ⓓ

ⓓ

(shape=circle or shape=point), ...:sw and {rank=same; ...}

Report on implementing and extending the SNOMED CT

Diagramming Guideline using Graphviz.
Dr. Edward Cheetham | NHS Digital, UK

ePosters sponsored by:

Diagram

variants 3

and

Conclusions

Diagram

variants 2

Methods 2

and

Diagram

variants 1

Introduction

and

Methods 1

Basic element features (such as labels, colour and shape) can be reused in diagram
variants and extensions optimised for other purposes, as in the following examples:

Diagram variants Ancestor, descendant and
structured sets: Graphviz is
designed to draw graphs, and is
therefore well suited to draw
ancestor, descendant and (given
suitable pre-processing)
structured display of arbitrary set
members. Figure 8 shows the
ancestry of 253997002 | Cleft of
soft palate |. Defined and
primitive concept conventions as
well as subtype arrows from the
guideline are used, and in this
example sample longest (red)
and shortest (orange) paths to
root are also shown.Historical associations: Inbound

and outgoing historical associations
can be used to augment ancestor
and descendant diagrams. Figure 9
augments the ancestry of
253997002 | Cleft of soft palate |
with incoming historical
'relationships’ related to the focus.
These are distinguished by colour
and labelled using corresponding
association reference set metadata.
As well as incoming historical
associations from inactive concepts
(here POSSIBLY EQUIVALENT
TO, SAME AS and WAS A),
'REFERS TO CONCEPT'
‘relationships’ resulting from
description reassignment can be
shown between active concepts.

Extended and multi-focus definitions: Many concept definitions include values
that are themselves richly modelled, often including deeply-nested definitions.
Graphviz syntax makes it easy to generate diagrams that retain consistency with
single focus definition diagrams, but also show nested definition expansions or
definitions of concept sets. Figure 6 shows the concept definition of 416558007

Figure 7: Multi-focus concept definitions

|Exophthalmos due to
thyroid eye disease| ()
and one option for its
expansion (). The latter
include definition details
of referenced values (the
original focus and
recursively referenced
values are in pink). The
expanded diagram also
merges values where
referenced by multiple
attributes and shows
subgraph relationships
between values. Figure 7
is a multi-definition
diagram for a set of
increasingly specific
ventricular septal defect
procedures (highlighted
in pink).

Figure 6: Simple and

expanded concept definitions



The diagram uses a ‘bottom-top’ (rankdir=BT)
flow for each definition (indicating increasing
specificity to the bottom) and unlike Figure 6
diagram , shared values are not merged.

Figure 8: Simple ancestor set

Figure 9: Ancestor set and focus-related

historical associations

Report on implementing and extending the SNOMED CT

Diagramming Guideline using Graphviz.
Dr. Edward Cheetham | NHS Digital, UK

ePosters sponsored by:

Diagram

variants 3

and

Conclusions

Diagram

variants 2

Methods 2

and

Diagram

variants 1

Introduction

and

Methods 1

Conclusions

References

[1] https://confluence.ihtsdotools.org/display/DOCDIAG/Diagramming+Guideline

[2] https://graphviz.org/

[3] https://graphviz.org/resources/

[4] https://graphviz.org/doc/info/lang.html

[5] https://bitbucket.org/cheethame2017/sct2/src/master/

[6] https://gist.github.com/edcheet/3c910debf741cd8c1f0cfc828c00f60e

[7] https://d3js.org/

[8] https://bl.ocks.org/edcheet/6b84ba58b86bca24994447a0259f7fdf

This ePoster showcases the application of Graphviz to SNOMED CT data. It
shows how automatic layouts can be tailored to reproduce guideline-conformant
concept definition diagrams, and how these diagrams can be extended and
combined, introducing additional (guideline-consistent) diagram types to reveal
further details of SNOMED CT definitions, structure and evolution. It is hoped that
the examples provided will assist members of the SNOMED CT community to
understand and use Graphviz, and if felt valuable, to consider features of the
diagram variants for incorporation into future versions of the guideline.

Diagram variants

Complex cross-maps: UK classification cross-maps use
a combination of blocks, groups and target code choices
to combine and rank candidate map targets. Map data is
often difficult to read if presented as a sequence of table
rows, however it is possible, using the Graphviz
'subgraph' and 'cluster' mechanisms, to produce two-
dimensional nested diagrams that neatly summarise the
map details. Figure 11 shows the UK ICD 10 cross maps
for 296971009 |Accidental potassium over-dose|. The
layout rapidly conveys the number of cross map ‘block’
choices available, how many ‘groups’ are required within
each block, and what the ICD 10 target codes may be
(including defaults in yellow) within each group. Echoing
the guideline colour convention, the background of Figure
11 indicates that 296971009 is fully-defined.

D3-enabled animation: It is
possible to combine
Graphviz’s layout capabilities
with the animation and
transition features of D3.js [7].
Figure 12 shows such an
animation, revealing the
nature and extent of change
to a concept’s ancestry over
time (here 18317005 |
Rectovulval fistula | at 6
month intervals between
2002 and 2022). An
interactive version of this
animation can be found at [8].

Treemap descendants: Using the Graphviz
'patchwork' layout a treemap view of each
concept's immediate children can be generated.
This complements a hierarchical or browser view
by rapidly conveying each child's descendant
count. Figure 10 shows such a Treemap-style
child view for concept 276654001 |Congenital
malformation|. Guideline-conformant colours

Figure 10: Treemap

descendants

Figure 11: UK

Complex cross-maps

help distinguish primitive
and sufficiently-defined
children. Descendant
(and child) numbers are
also shown.

Figure 12: Animated ancestor evolution

https://confluence.ihtsdotools.org/display/DOCDIAG/Diagramming+Guideline
https://graphviz.org/
https://graphviz.org/resources/
https://graphviz.org/doc/info/lang.html
https://bitbucket.org/cheethame2017/sct2/src/master/
https://gist.github.com/edcheet/3c910debf741cd8c1f0cfc828c00f60e
https://d3js.org/
https://bl.ocks.org/edcheet/6b84ba58b86bca24994447a0259f7fdf

