Graph database approach to management and use of SNOMED CT encoded clinical data

W. Scott Campbell, Jay Pedersen, James R. Campbell
University of Nebraska Medical Center
Overview

• Employment of graph database technology for SNOMED CT in context of clinical use

• Result of SIA Schema Project:
 – Manage post-coordinated expressions for surgical pathology

• Results and additional findings

• Sample queries
Initial Use Case

• Instantiate a data base with numerous, real-time post-coordinated expressions of surgical pathology findings.

• Relational database designs resulted in HUGE join tables
 – Suggested a use case for a triple-store database (RDF?)
 – Investigation of NoSQL options suggested graphDB’s

• Graph databases:
 – Class of NoSQL
 – Emphasize connectedness of data vs. rows/columns of data
 – Open world vs. closed world
 • Flexible
 • Transactionally ACID properties
 – SNOMED CT is a directed, acyclic graph

• Used Neo4j (San Mateo, CA), open sourced, java based
Approach

- Graphs consist of Nodes and Relationships (edges) that connect Nodes
 - Nodes and Edges can have properties ("Property Graph")

- Used Snapshot, RF2 release of SNOMED CT International release (classified version)

- All SNOMED CT concepts represented as nodes
 - All RF2 metadata represented as properties of nodes
 - Active, module ID, definition status ID, effective time

- All SNOMED CT attributes represented as edges
 - RF2 Metadata as properties

- All names set as nodes with relationship to SNOMED CT expression node

- Result: A graph database with 100% of SNOMED CT content

- Fast! – Transitive Closure Calculation time < 60 sec on laptop
Example: Pneumonia
Add Patient Data

- Import patient records from de-identified clinical data warehouse
- Approximately 465,000 patients
- Import patient problem lists (All SNOMED CT encoded)
 - Up to 20 years of data
 - 2,770,000 diagnoses in total
 - Properties:
 - Date of diagnosis (start and end dates)
 - Active, inactive or deleted status
- Result
 - Patient identification by SNOMED CT codes/subsumption same as RDBMS based clinical data warehouse.
 - Queries were fast! Desktop on par with enterprise class server.
 - Unintended finding: Queries of negation, disjunction, depth
Example: Find all patients with Pneumonia due to some influenza virus or some parainfluenza virus

32 patients, 2.2 sec
Queries of undefined depth

- Find all patients with positive BRCA1 or BRCA2 gene mutation who have an ovarian cancer diagnosis.
- Return all shared diagnoses.
How about Historicity?

• Graph database calculation of transitive closure table – FAST

• David Markwell’s challenge
 • Can the database produce TC tables for multiple years AND a Delta TC table between and two release dates?
 • Beneficial for SNOMED CT sites to assess of effects of terminology updates on implementations

• Challenge accepted!
Challenge Met

• Following methods used previously for a single release

• Added property to maintain historical representations of SNOMED CT concepts and relationships

• Instantiated graph DB with classified, full RF2 release
 – 6 GB, ~425K concepts and ~6.9M relationships

• TC calculations created using the graph model by year match TC tables created for any single release year.

• Creation of delta TC table between any two years < 4 min
 – TC table year 1 < 30 sec
 – TC table year 2 < 30 sec
 – Delta TC table calculation and write to file – 2.5 min

• Creation of terminology update process with active patient data
 – Terminology updates “on the fly”
Example: Viral pneumonia

Attribute Inactivated in 20150731 release
What about patient data?

- Added same patient data used in Snapshot graph DB
 - 465,000 patients
 - ~2.77 million associated problems/clinical findings (20140901 US extension)
 - GraphDB build on 20150901 US extension)

- Queried all SNOMED CT expressions with existing relationship to any patient AND Active status = ‘0’ (Inactive concept)
 - Return – 79 inactive concepts
 - Affected – 6134 distinct patients
 - All concept changes due to changes in 20150131 International release
ID all patients with active diagnosis linked to inactive SNOMED CT concept

<table>
<thead>
<tr>
<th>SCTID</th>
<th>Fully Specified Name</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>23346002</td>
<td>Sunburn (disorder)</td>
<td>7</td>
</tr>
<tr>
<td>91340006</td>
<td>Extrinsic asthma with status asthmaticus (disorder)</td>
<td>6</td>
</tr>
<tr>
<td>601000119109</td>
<td>History of bee sting allergy (situation)</td>
<td>1</td>
</tr>
<tr>
<td>71275003</td>
<td>Pseudoprimordial aldosteronism (disorder)</td>
<td>17</td>
</tr>
<tr>
<td>431347008</td>
<td>Lipodystrophy associated with Human immunodeficiency virus infection (disorder)</td>
<td>4</td>
</tr>
<tr>
<td>312403005</td>
<td>Legionnaire's disease (disorder)</td>
<td>6</td>
</tr>
<tr>
<td>367530008</td>
<td>Spondyloepiphyseal dysplasia congenita (disorder)</td>
<td>3</td>
</tr>
<tr>
<td>440181000</td>
<td>Apparent life-threatening event (finding)</td>
<td>19</td>
</tr>
<tr>
<td>44008002</td>
<td>Somatotropin deficiency (disorder)</td>
<td>131</td>
</tr>
<tr>
<td>395657006</td>
<td>Pallister-Killian syndrome (disorder)</td>
<td>1</td>
</tr>
<tr>
<td>429081000124107</td>
<td>History of extracorporeal membrane oxygenation (situation)</td>
<td>15</td>
</tr>
</tbody>
</table>
What are the implications?

• Persistent and query-able representation of patient data over time in BOTH current and past SNOMED CT representations

• Quality metrics reporting based on any referenced point in time?

• Historical identification of patients with diagnoses that have been refined?
 – Perspective on medical knowledge/understanding
 – Epidemiologic study

• SNOMED CT quality reviews in real-time/impact on patient queries
 – Identification of changes and potential classifier issues in:
 • Concept deprecation
 • Subsumption changes
 • Defining relationships changes
 • Primitive vs. fully-defined
Example – Congenital B strep pneumonia

Concept changed to fully defined, changed subsumption logic
Where next?

• Dynamic environment to retain developing SNOMED CT content in anatomic pathology data (cancer synoptic data)

• Updated expressions accommodated as released and on demand

• Existing data with new SNOMED CT representation easily identified and modified.
 – No loss of historicity of data!

• Environment to test and prove out patient data in other domains
 – Microbiology?
 – Drug to bug to patient rapid identification?
References

