

GENOMICS IN HEALTH IMPLEMENTATION FORUM


Opening Remarks: Day 2

Kathryn North and Mark Caulfield

Agenda – Day 2

Mark Caulfield (GEL)

We encourage you to participate!

Please use **Q&A** to ask questions during plenary sessions

Use the **Raise Hand** button if you would like to make a verbal question or comment *

Raise Hand

Continue discussions using Chat

Please ensure your message is set to "All panelists and attendees"

Clinical Data Exchange -Pedigree and Family Health History

Global Alliance

for Genomics & Health

Collaborate. Innovate. Accelerate.

Genomics in Health Implementation Forum 2021

Clinical and Phenotypic Data Capture & Exchange –

Pedigree & Family Health History

Intro to the GA4GH Pedigree Standard and Upcoming Connectathon

Grant Wood, Orion Buske

Background – The original <u>peer-reviewed paper</u> was published in December 2008

GA4GH driver projects and other interested parties in GA4GH have expressed interest in a pedigree standard that supports their wide-ranging use cases

A recommendation to follow for the development of new data collection tools, storage, and solutions

Builds upon existing standards like PED and HL7 FHIR

Support the community of GA4GH (which includes healthcare, research, patient advocacy, life science, and information technology), in expanding their collection, study, use, <u>and especially sharing</u>, of FHH information.

A Recommendation for a Minimum Data Set for Family Health History

Data Elements: Pedigree

Element Name	Required Optional	PED column	FHIR name	Notes
Family ID (Pedigree ID)	R	Col. 1 Family ID	FamilyMemberHistory. identifier	This is used when distinct family records are defined then shared. Also can be thought of as the Pedigree ID.
Proband ID	0/R		Patient <id <br="" value="proband">Or New extension to include a Proband type</id>	Only required when the pedigree is used to focus on heritable risk for a specific person in the pedigree. For other use cases such as research, a Proband type may be needed. The FHIR resource <u>ResearchSubject.identifier</u> includes the following status choices: follow-up, ineligible, not-registered, off-study, on-study, on-study-intervention, on-study-observation, pending-on-study, potential-candidate, screening, and withdrawn.
Pedigree Source metadata	0		FamilyMemberHistory. Meta Or FamilyMemberHistory. reasonCode	Possible uses are, but not limited to, where did the pedigree come from, tool or method used, clinical or patient entered, research identifier.
Status	0		FamilyMemberHistory. status	From FamilyHistoryStatus choices are: partial, completed, entered-in-error, and health-unknown.
Language	0		FamilyMemberHistory. language	The codes SHOULD be taken from <u>Common Languages.</u>
Narrative	0		FamilyMemberHistory. text	A human-readable narrative that contains a summary of the resource and can be used to represent the content of the resource to a human. Resource definitions may define what content should be represented in the narrative to ensure clinical safety.
Date of FHH data collection	0		FamilyMemberHistory. date	Date should be the latest date of when any data is updated.

A Recommendation for a Minimum Data Set for Family Health History

Element Name	Required Optional	PED column	FHIR name	Notes
Individual ID	R	Col. 2 Individual ID	Need to add to FamilyMemberHistory	An 'Individual type' (not type of ID) may be needed. This could include the individual's electronic medical record identifier, genealogical record identifier, could be the person is only represented via their lab sample identifier, or person information is missing or unknown (just have a relationship), or person information is private/hidden based on a consent choice, or the same individual and/or Individual ID is found in other pedigrees.
Father ID	R	Col. 3 Paternal ID	FamilyMemberHistory. extension:Parent	Must be an Individual ID
Mother ID	R	Col. 4 Maternal ID	FamilyMemberHistory. extension:Parent	Must be an Individual ID
Biological Sex	R	Col. 5 Sex	FamilyMemberHistory. sex	This element should ideally reflect whether the individual is genetically male or female (chromosomal sex). See <u>AdministrativeGender</u> and <u>Patient Gender and Sex</u> .
Person Gender	0		Person.gender	The gender might not match the biological sex as determined by genetics, but the individual's preferred identification.
Human Name Given	0		FamilyMemberHistory. name	Datatype is <u>HumanName</u> , includes Given name, and subsequent Given names for middle names.
Human Name Family	0		FamilyMemberHistory. name	Datatype is <u>HumanName</u> , includes Family name
Relative Relationship	0		FamilyMemberHistory. Relationship	See <u>HL7 v3 Value Set FamilyMember</u> and <u>CodeSystem:</u> <u>RoleCode</u>

Data Elements: Individual

The table shown is a subset - Also includes elements like individual age, disease, disease age of onset, disease contributed to death, adoptive status, multiple birth status, consanguinity, etc.

Issues on collecting Race, Ethnicity, or Ancestry

- Multiple ontologies to choose from that match specific use cases
- US based ontology has long list of native American tribes
- Another ontology is geographically based
- In South Africa they combined a tribe with a language
- We need codes for the different ontologies

Multiple formats and methods exist for the capturing of these data elements

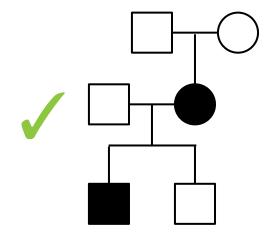
- General or disease specific (e.g., cancer, etc.), clinical, research, or patient-facing
- Form, survey, or questionnaire
- Graphical creation of a pedigree. These tools follow the genealogical method of building a family tree, but then add medical histories for each family member on that tree.
- The Pedigree Standardization Work Group (PSWG) of the National Society of Genetic Counselors (NSGC) developed a system for a clinical pedigree nomenclature.
- Pedigree derived from the patient electronic medical record
- Chatbot technology has been applied to the questionnaire format to guide people in gathering a complete history.

Other Data Elements to Consider (listing some examples)

- Data sharing status interoperability capability with other systems
- Consent status or record may be required in some use cases, especially if names and DOB's are shared

Other Data Elements to Consider (listing some examples)

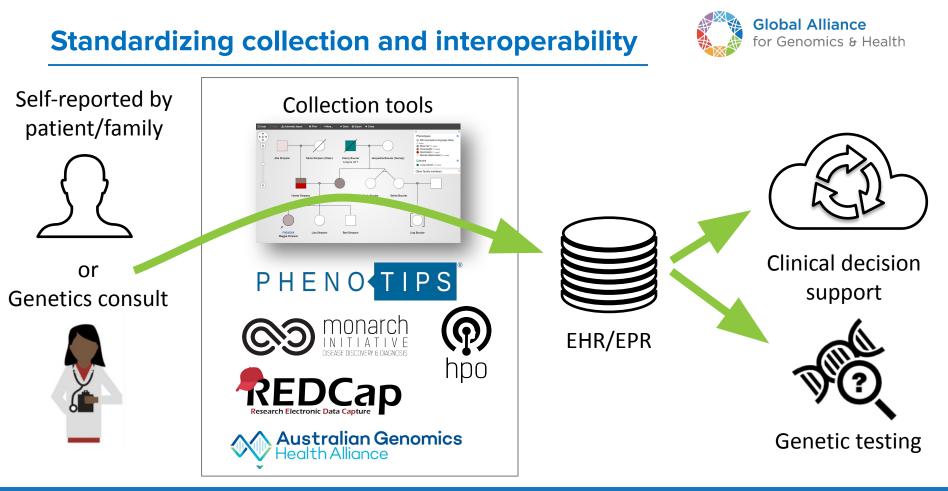
- Representation of marital or partner status and other relationship qualities (e.g., estranged, close, household member)
- *Extension.extension:Source (FHIR)* In what way the disease, condition, race, ethnicity, ancestry is reported (e.g., patient reported, genetic test, EMR record, public records like death certificate or disease registries, clinical trial or research, other, unknown).
- *FamilyMemberHistory.condition.outcome (FHIR)* Indicates what happened following the condition. If the condition resulted in death, the deceased date is captured on the family member.



Other Data Elements to Consider (listing some examples)

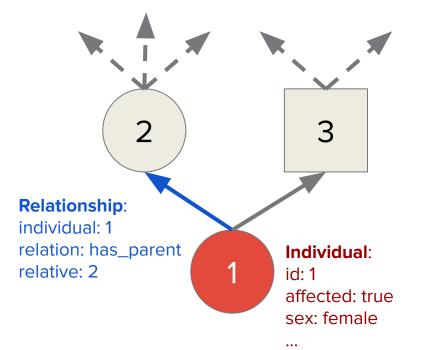
- *Genetic observations* General genomic reporting, Variant reporting, Pharmacogenomic reporting, Somatic reporting (FHIR profiles)
- *Pedigree analysis results* Analysis result, Probability, Percentage risk, Relative risk (HL7 Version 3, needs to be developed as a FHIR profile)

Why PED is not enough

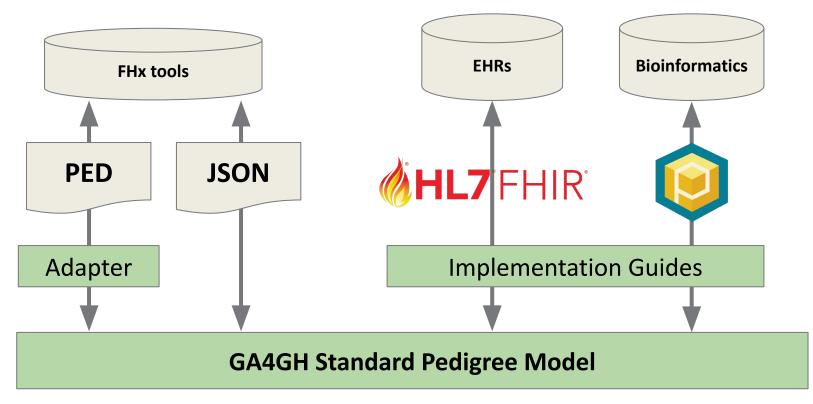


• basic parent-child

- twins
- adoption
- separation, donors
- consanguinity
- pregancy/fetus/miscarriage
- alive/deceased
- multiple phenotypes
- data provenance


Necessary for **counseling**, **risk assessment**, and **genomic interpretation**

Graph-based conceptual model


Directed graph: nodes are individuals and arrows are relationships

- 1. Superset of 6-column PED format
- 2. Optional genderless **relationship vocabulary** distinguishes biological and social relationships
- 3. Graph structure allows specifying arbitrary relationships
- 4. Easy-to-use within the context of other standards such as FHIR or Phenopackets
- 5. Simplifies converting a genetic family history from **one proband to another**

Use by related standards

Participate in the Pedigree Connectathon to test interoperability with Phenopackets v1.1, HL7 FHIR: April 1 @ 19:00 UTC **Registration:** <u>bit.ly/PedigreeConnect</u>

GitHub: <u>https://github.com/ga4gh-cp/pedigree</u> (proposal is <u>PR</u>)

Clinical Interoperability of Variant Evidence

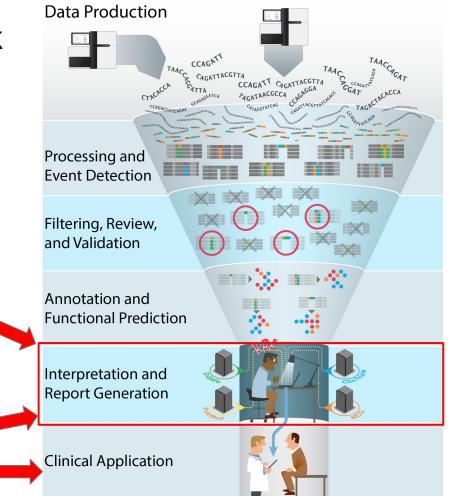
Alex Wagner (VICC/Nationwide) &

Larry Babb (Broad Institute)

Precision Medicine

Assayed DNA

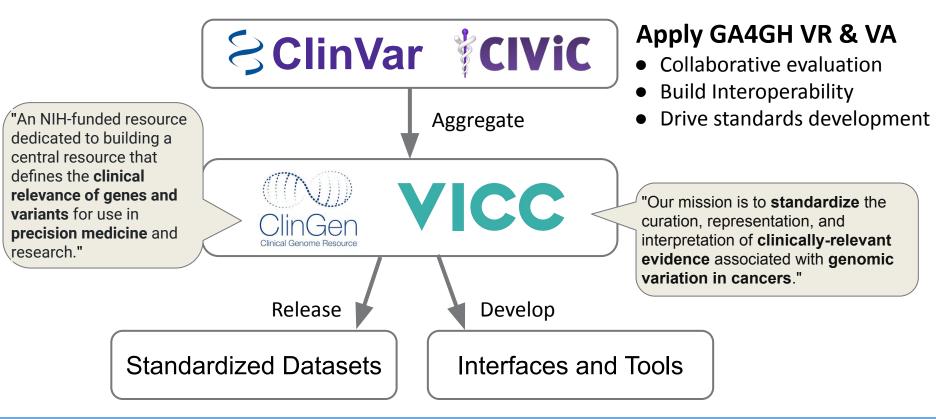
Clinical Genomic Variant Report

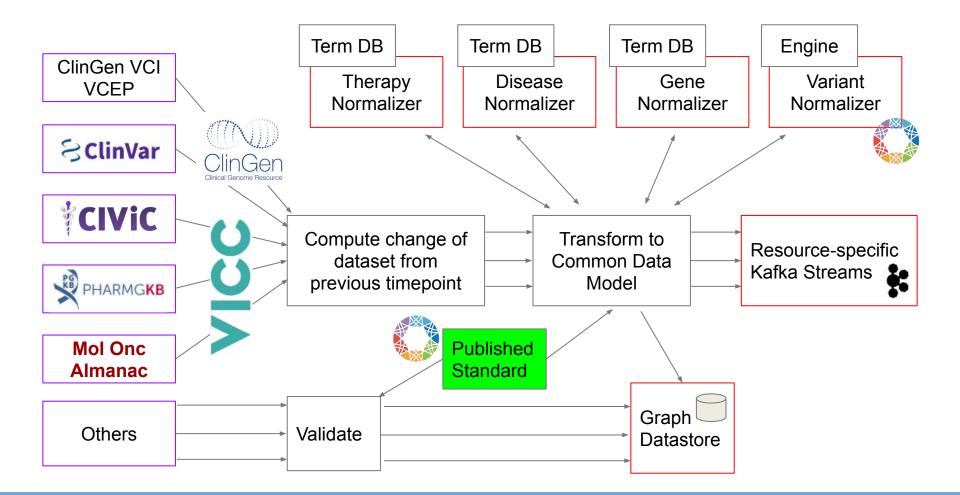

Patient Care

The Interpretation Bottleneck

Problem: NGS has been largely automated but **clinical interpretation of genomic alterations remains a major bottleneck** for realizing precision medicine

> Variant Centric Variant Evidence Collection Variant Classification


Case Centric Observed Variant Findings Variant Interpretation Knowledge Update Alerting



Good BM, Ainscough BJ, McMichael JF, Su Al⁺, Griffith OL⁺. 2014. Genome Biology. 15(8):438.

ClinGen + VICC Driver Project Initiative

Let's take a look at interoperability between

CIViC and ClinVar

variant representations

to demonstrate the complexities

CIViC Record

https://civicdb.org/links/evidence/2997

Last Modified by **kkrysiak** Last Review

Last Reviewed by 🗿 EricaBarnell Last C

Assertions:

AID5 AID6

Last Commented On by 🏽 EricaBarnell

Allele Registry ID: CA126713

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TK therapies.

Variant Type:

Missense Variant

HGVS Descriptions:

NC_000007.13:g.55259515T>G , NM_005228.4:c.2573T>G , ENST00000275493.2:c.2573T>G , and NP_005219.2:p.Leu858Arg

ClinVar IDs: 376280, 376282, and 16609

CIViC Variant Evidence Score: 375

Evidence for L858R 41 total items (showing 40)

EID DIS DRUGS DESC ET CS vo EL A ED ER -= × ~ ~ ~ × ¥ Lung Non-small Cell Carcinoma 0 B ••• 5* 2994 Erlotinib 13 E 0 •••• 5* Afatinib 2997 Lung Non-small Cell Carcinoma 0 B 4860 Lung Non-small Cell Carcinoma Dacomitinib E 5* 0 13 E Lung Adenocarcinoma Afatinib 4* 879 EVIDENCE EID2997 **O** Evidence Summary Evidence Talk

³ Representative Variant Coordinates nd is one of Ref. Build: GRCh37 Ensembl Version: 75

Chr.	Start	Stop	Ref. Bases	Var. Bases
7	55259515	55259515	т	G

Transcript ENST00000275493.2

MyVariant.info ID	,	ClinVar ID	co	SMIC ID (v68)	8
chr7:g.55259515T>G		16609	CO	SM6224	
dbSNP RSID	ClinVar	Clinical Sigr	nifican	ice	
rs121434568	sponse				
SnpEff Effect		SnpEff Im	pact	gnomAD Adj. AF	(
structural interaction v	ariant	HIGH		-	
	View M	vVariant.info	Details		

..... Get Data

Help

Last Modified by 👔 kkrysiak

Aliases: LEU858ARG and RS121434568

375

Last Reviewed by A EricaBarnell

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of

(NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib

the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer

and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and

Last Commented On by A EricaBarnell

Allele Registry ID: CA126713

Variant Summary Variant Talk

Help

0

Representative Variant Coordinates Ref. Build: GRCh37 Ensembl Version: 75 Chr. Start Stop Ref. Bases Var. Bases 7 55259515 55259515 Т G Transcript ENST00000275493.2 MyVariant.info ID COSMIC ID (v68) MyVariant.info ClinVar ID chr7:g.55259515T>G 16609 COSM6224 dbSNP RSID **ClinVar Clinical Significance** rs121434568 drug response 0 SnpEff Effect SnpEff Impact gnomAD Adi, AF structural interaction variant HIGH View MyVariant.info Details

..... Get Data

	to chemotherapy alone. Third generation TKI's are currently in nutant forms of EGFR, a few of which have shown efficacy in to earlier generation TKI therapies.
Variant Type:	Assertions:
Missense Variant	• AID5 AID6
HGVS Descriptions:	
NC_000007.13:g.55259515T>G,	
NM_005228.4:c.2573T>G ,	
ENST00000275493.2:c.2573T>G , and	
NP_005219.2:p.Leu858Arg	
ClinVar IDs:	
376280, 376282, and 16609	
CIViC Variant Evidence Score:	

Evidence for L858R 41 total items (showing 40)

EID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻
				~	~	~	~	~	~
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	۲	ıۍ		•••	5 ★
2997	Lung Non-small Cell Carcinoma	Afatinib		A		IC.			5 ★
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В	۲	IB		•••	5 ★
879	Lung Adenocarcinoma	Afatinib	8	В		16			4*

VARIANT L858R

Last Modified by 👔 kkrysiak Last Reviewed by

Aliases: LEU858ARG and RS121434568

lele Registry ID: CA126713

Last Commented On by B EricaBarnell

EGFR L858R has long been recognized as a functionally signific station in cancer, and is one of the most prevalent single mutations in lung cancer. Best described mon-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Variant Type:

Missense Variant

HGVS Descriptions:

NC_000007.13:g.55259515T>G, NM 005228.4:c.2573T>G. ENST00000275493.2:c.2573T>G , and NP_005219.2:p.Leu858Arg

ClinVar IDs:

376280, 376282, and 16609

CIViC Variant Evidence Score:

375

Evidence for L858R 41 total items (showing 40) DIS EID DRUGS DESC ET CS vo EL A ED ER -= × ~ ~ ~ × ¥ Lung Non-small Cell Carcinoma E 0 B ••• 5* 2994 Erlotinib 0 13 E •••• 5* Afatinib 2997 Lung Non-small Cell Carcinoma Lung Non-small Cell Carcinoma 0 B 4860 Dacomitinib E 5* 0 13 E Lung Adenocarcinoma Afatinib 4* 879 EVIDENCE EID2997 **O** Evidence Summary Evidence Talk

https://civicdb.org/links/evidence/2997

Ô

MyVariant.info

Help

Chr. Start 7 55259515	Stop 55259515	Ref. Bas T	es Var. Base G
Transcript ENST00000275493.2			
MyVariant.info ID	ClinVar	D CO	SMIC ID (v68)
chr7:g.55259515T>G	16609	CO	SM6224
dbSNP RSID	ClinVar Clinical	Significar	ice
rs121434568	drug response		
SnpEff Effect	SnpEt	f Impact	gnomAD Adj. AF
structural interaction va	riant HIGH		

..... Get Data

Representative Variant Coordinates

Assertions:

AID5 AID6

Last Modified by 👷 kkrysiak Last

Last Reviewed by 🏨 EricaBarnell La

Last Commented On by 🏽 EricaBarnell

Variant Summary Variant Talk

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Variant Type:	Assertion	s:
Missense Variant	• AID5	AID6
HGVS Descriptions:		
NC_000007.13:g.55259515T>G ,		
NM_005228.4:c.2573T>G ,		
ENST00000275493.2:c.2573T>91, and		
NP_005219.2:p.Leu858Arg		
ClinVar IDs:		
376280, 376282, and 16609		
CIViC Variant Evidence Score:		
375		

Representative Variant Coordinates

Ref. Build: GRCh37 Ensembl Version: 75

Chr.	Start	Stop	Ref. Bases	Var. Bases
7	55259515	55259515	т	G

Transcript ENST00000275493.2

MyVariant.info ID		ClinVar ID	COS	SMIC ID (v68)
chr7:g.55259515T>G		16609	COS	SM6224
dbSNP RSID	ClinVar	Clinical Sigr	ifican	e
rs121434568	drug re	sponse		
SnpEff Effect		SnpEff Im	pact	gnomAD Adj. AF
	variant	HIGH		

EID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻	
				~	~	~	~	~	~	
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	Α	۲	ıۍ]			5★	
2997	Lung Non-small Cell Carcinoma	Afatinib	8	A		1C			5 ★	
4860	Lung Non-small Cell Carcinoma	Dacomitinib	È	В	۲	l C		•••	5★	
879	Lung Adenocarcinoma	Afatinib	E	В		1G			4*	

VARIANT L858R

Last Modified by **kkrysiak** Last Review

Last Reviewed by 😰 EricaBarnell

Last Commented On by 🗿 EricaBarnell

Allele Registry ID: CA126713

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Ref. Build: GRCh37 Ensembl Version: 75 Ref. Bases Chr. Start Stop Var. Bases 7 55259515 55259515 Т G Transcript ENST00000275493.2 MvVariant.info ID ClinVar ID COSMIC ID (v68) chr7:g.55259515T>G 16609 COSM6224 dbSNP RSID **ClinVar Clinical Significance** rs121434568 drug response SnpEff Effect SnpEff Impact gnomAD Adi, AF

Representative Variant Coordinates

structural interaction variant

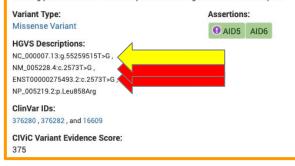
variant HIGH View MyVariant.info Details

EID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻	Ξ
				~	~	~	~	~	~	
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	۲	ıد)			5★	
2997	Lung Non-small Cell Carcinoma	Afatinib		A		1C			5 ★	
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В	۲	ıС		•••	5★	
879	Lung Adenocarcinoma	Afatinib		В		16			4*	

MyVariant.info

0

Last Modified by 👔 kkrysiak Last Reviewed by 👔 EricaBarnell


Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

Last Commented On by A EricaBarnell

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation and the second generation of the second generation.

and neratinib. NSCLC patients with this mutation treated with TKI's show increases of the second generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Representative Variant Coordinates Ref. Build: GRCh37 Ensembl Version: 75 Chr. Start Ref. Bases Stop Var. Bases 7 55259515 55259515 Т G Transcript ENST00000275493.2 MvVariant.info ID ClinVar ID COSMIC ID (v68) chr7:g.55259515T>G 16609 COSM6224

 MyVariant.info ID
 ClinVar ID
 COSMIC ID (v68)

 chr7:g.55259515T>G
 16609
 COSM6224

 dbSNP RSID
 ClinVar Clinical Significance

 rs121434568
 drug response

 SnpEff Effect
 SnpEff Impact
 gnomAD Adj. AF

 structural interaction variant
 HIGH

ID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻	=
				~	~	~	~	~	~	
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	۲	[IC]		•••	5 ★	1
2997	Lung Non-small Cell Carcinoma	Afatinib		A		1C			5 ★	
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В		[IC]		•••	5★	
879	Lung Adenocarcinoma	Afatinib	F	В		1C			4*	

Last Modified by 👔 kkrysiak

Last Reviewed by A EricaBarnell

Last Commented On by A EricaBarnell

Ö Variant Summary Variant Talk

Aliases: LEU858ARG and RS1:	21434568	Allele Registry ID: CA126713	Repr	esentative Varian	t Coordinat	tes			0
		nificant mutation in cancer, and is one of	Ref. I	Build: GRCh37 E	insembl Ve	rsion: 75			
the most prevalent single mut (NSCLC), the mutation seems and neratinib. NSCLC patients progression-free survival, as c clinical trials that specifically treating patients that failed to		Start 55259515 script T00000275493.2	Stop 5525951		ef. Bases	Var. Bases G			
Variant Type: Missense Variant	Asserti • All	ions: D5 AID6		a riant.info ID g.55259515T>G		inVar ID 6609	COSM	C ID (v68) 5224	ant.info
HGVS Descriptions: NC_000007.13:g.55259515T>G , NM_005228.4:c.2573T>G , ENST00000275493.2:c.2573T>G , NP_005219.2:p.Leu858Arg			rs121 SnpE	IP RSID 1434568 Iff Effect tural interaction	drug resp	-	nificance npact gno -	omAD Adj. AF	😪 MyVaria
ClinVar IDs:					View MyV	/ariant.info	o Details		

376280, 376282, and 16609

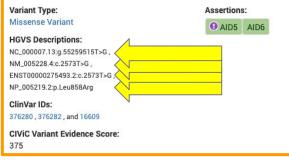
CIViC Variant Evidence Score:

375

Evidence for L858R 41 total items (showing 40) Get Data Help DIS EID DRUGS DESC ET CS vo EL A ED ER . = × ~ ~ ~ × ¥ Lung Non-small Cell Carcinoma 0 B ••• 5* 2994 Erlotinib 13 E 0 •••• 5* Afatinib 2997 Lung Non-small Cell Carcinoma Lung Non-small Cell Carcinoma 0 B 4860 Dacomitinib E 5* 0 B E Lung Adenocarcinoma Afatinib 4* 879 EVIDENCE EID2997 **Evidence Summary O** Evidence Talk

VARIANT L858R

Last Modified by 👔 kkrysiak Last


Last Reviewed by 😰 EricaBarnell

Last Commented On by 🗿 EricaBarnell

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Representative Variant Coordinates Ref. Build: GRCh37 Ensembl Version: 75 Ref. Bases Chr. Start Stop Var. Bases 7 55259515 55259515 Т G Transcript ENST00000275493.2 MyVariant.info MvVariant.info ID ClinVar ID COSMIC ID (v68) chr7:g.55259515T>G 16609 COSM6224 dbSNP RSID **ClinVar Clinical Significance** rs121434568 drug response 0 SnpEff Effect SnpEff Impact gnomAD Adi, AF structural interaction variant HIGH View MyVariant.info Details

EID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻
				~	~	~	~	~	~
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	۲	ıد)			5*
2997	Lung Non-small Cell Carcinoma	Afatinib		A		6			5 ★
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В		ıۍ]			5 ★
879	Lung Adenocarcinoma	Afatinib	E	В		[IC]			4*

https://civicdb.org/links/evidence/2997

		ARIANT L858R					Varian	nt Summary	y Varian	nt Talk 🏼 🌣	
CIViC Variant	Last Modified	by R kkrysiak Last Reviewed by R Erica	Barnell Last Commented On by A EricaBarnell								
			Allele Registry ID: CA126713	Ref.			oordinates embl Versior	n: 75			
	(NSCLC), the and neratinib progression-f clinical trials	mutation seems to confer sensitivity to fi . NSCLC patients with this mutation treat ree survival, as compared to chemothera	ist described in non-small cell lung cancer irst and second generation TKI's like gefitinib ed with TKI's show increased overall and py alone. Third generation TKI's are currently in of EGFR, a few of which have shown efficacy in ation TKI therapies.		r. Start 552599 nscript ST0000027	515	Stop 55259515	Ref. Bas T	ses Var. G	Bases	
	Variant Type: Missense Var	iont	AID5 AID6		/ariant.info 7:g.5525951		ClinVa 16609		SMIC ID (v68) SM6224	nt.info	
	HGVS Descrip NC_000007.13: NM_005228.4:c ENST00000275 NP_005219.2:p.		rs12 Snp	NP RSID 21434568 Eff Effect ctural intera	dı	5	e Eff Impact	gnomAD Ad) MyVariant.info		
	ClinVar IDs:	2 , and 16609		View MyVariant.info Details							
· · · · · · · · · · · · · · · · · · ·	CIVIC Variant Evidence Score: 375										
	Evidence f	or L858R 41 total items (showing 40)				2	Get Data) (▶ н	elp	
	EID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS		ER▼ ≡	
	2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	✓	✓IC	~	· · · ·	∽ 5★ ■	
	2997	Lung Non-small Cell Carcinoma	Afatinib		A		1G			5★	

Dacomitinib

Afatinib

E

0

0

IC)

B

Evidence Summary

....

....

5*

4*

Evidence Talk

4860

879

Lung Non-small Cell Carcinoma

Lung Adenocarcinoma

EVIDENCE EID2997

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

https://civicdb.org/links/evidence/2997

11/12	141111								
2	100	VA	DI			1 0		0	
۲.	1-1	VA	nı	AI	NEE	LC	\mathbf{c}	ο	
00000	Concernation of the second sec							100	

Last Modified by 😰 kkrysiak Las

Last Reviewed by 🗿 EricaBarnell

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Variant Type: Missense Variant Assertions:

HGVS Descriptions:

NC_000007.13:g.55259515T>G , NM_005228.4:c.2573T>G , ENST00000275493.2:c.2573T>G , and NP_005219.2:p.Leu858Arg

ClinVar IDs: 376280, 376282, and 16609

CIViC Variant Evidence Score:

375

Evidence for L858R 41 total items (showing 40) Get Data Help EID DIS CS DRUGS DESC EL A ET ED VO ER -= ~ ~ × × × × 0 B ••• 5* 2994 Lung Non-small Cell Carcinoma Erlotinib E 0 13 •••• Afatinib 5 * 2997 Lung Non-small Cell Carcinoma B 4860 Lung Non-small Cell Carcinoma Dacomitinib \odot 5 * 13 E 0 Afatinib 4* 879 Lung Adenocarcinoma **EVIDENCE EID2997** Evidence Summary **Evidence Talk**

Representative Variant Coordinates Ref. Build: GRCh37 Ensembl Version: 75 Ref. Bases Chr. Start Stop Var. Bases 7 55259515 55259515 G т Transcript ENST00000275493.2 MvVariant.info ID ClinVar ID COSMIC ID (v68) MyVariant.info chr7:g.55259515T>G 16609 COSM6224 **ClinVar Clinical Significance** dbSNP RSID rs121434568 drug response SnpEff Effect SnpEff Impact gnomAD Adj. AF structural interaction variant HIGH

View MyVariant.info Details

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

VARIANT L858R

Last Modified by 😰 kkrysiak Last Re

Last Reviewed by 🏽 EricaBarnell

RS121434568

Allele Registry ID: CA126713

Last Commented On by B EricaBarnell

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Variant Type: Missense Variant

dirant.

HGVS Descriptions:

NC_000007.13:g.55259515T>G , NM_005228.4:c.2573T>G , ENST00000275493.2:c.2573T>G , and NP_005219.2:p.Leu858Arg

ClinVar IDs:

376280, 376282, and 16609

- ---- (--- LOCOD

CIViC Variant Evidence Score:

375

ID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻	Ξ
				~	~	~	~	~	~	
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	۲	ıۍ]			5 ★	
2997	Lung Non-small Cell Carcinoma	Afatinib	8	A	0	1C			5 ★	
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В		ß			5 ★	
879	Lung Adenocarcinoma	Afatinib		В		IC)			4*	

Representative Variant Coordinates Ref. Build: GRCh37 Ensembl Version: 75

Chr.	Start	Stop	Ref. Bases	Var. Bases
7	55259515	55259515	т	G

Transcript ENST00000275493.2

MyVariant.info ID		ClinVar ID	COSM	IIC ID (v68)	ę
chr7:g.55259515T>G		16609	COSM	16224	nt.in
dbSNP RSID	ClinVar	Clinical Sigr	nificance		aria
rs121434568	sponse			MyV	
SnpEff Effect		SnpEff Im	pact g	nomAD Adj. AF	0
structural interaction	variant	HIGH	-		
	View M	Variant info	Details		

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC 000007.13: g.55259515T>A q.55259515T>G

https://civicdb.org/links/evidence/2997

VARIANT L858R

Last Modified by 👔 kkrysiak Last Reviewed by A EricaBarnell

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Assertions:

Variant Type: Missense Variant **HGVS Descriptions:** NC_000007.13:g.55259515T>G,

NM 005228.4:c.2573T>G. ENST00000275493.2:c.2573T>G , and NP_005219.2:p.Leu858Arg

ClinVar IDs:

376280, 376282, and 16609

CIViC Variant Evidence Score: 375

ID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻	=
				~	~	~	~	~	~	
2994	Lung Non-small Cell Carcinoma	Erlotinib	8	A	۲	ıد)		•••	5 ★	1
2997	Lung Non-small Cell Carcinoma	Afatinib		Α		B			5 ★	
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В	۲	ı&		•••	5★	
879	Lung Adenocarcinoma	Afatinib	E	В		1C			4*	

Last Commented On by A EricaBarnell

MyVariant.info ID	ClinVar I	D COS	SMIC ID (v68)				
chr7:g.55259515T>G	16609	COS	SM6224				
	ClinVar Clinical Significance						
rs121434568	drug response						
SnpEff Effect	SnpEf	f Impact	gnomAD Adj. AF				
structural interaction va	riant HIGH		-				

Representative Variant Coordinates

Start

55259515

Chr.

Transcript ENST00000275493.2

7

My

Ref. Build: GRCh37 Ensembl Version: 75

Stop

55259515

View MyVariant.info Details

Var. Bases

MyVariant.info

G

Ref. Bases

т

VARIANT L858R

Last Modified by 👔 kkrysiak Last Re

Variant Type:

ClinVar IDs: 376280, 376282, and 16609 CIViC Variant Evidence Score:

375

Missense Variant

HGVS Descriptions:

NP_005219.2:p.Leu858Arg

3:g.55259515T>G,

T>G, and

Last Reviewed by A EricaBarnell Last Commented On by A EricaBarnell

Aliases: LEU858ARG and RS121434568

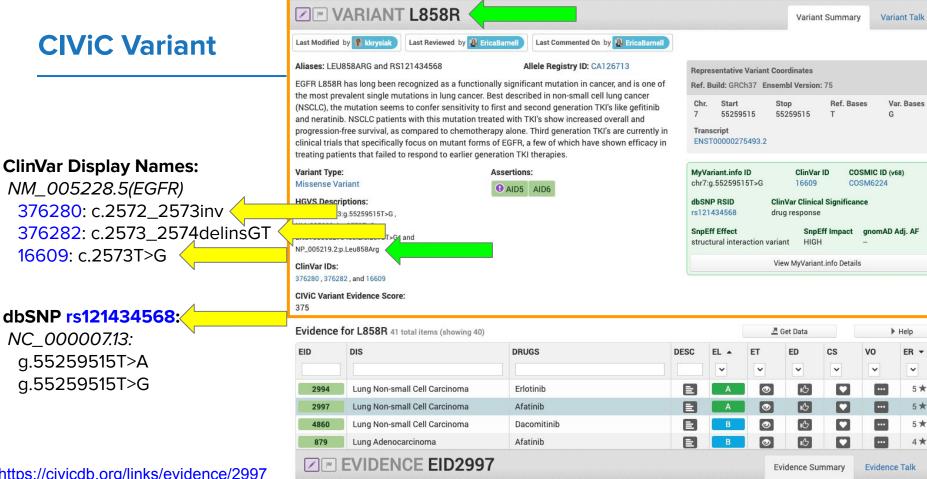
Allele Registry ID: CA126713

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Assertions:

AID5 AID6

ClinVar Display Names: NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G


dbSNP rs121434568:

NC_00007.13: g.55259515T>A g.55259515T>G

tns://civicdh	ora/links/ev	vidence/2997	

Chr. 7	Start 55259515	Stop 55259	515	Ref.	Base	es	Var. Bases G	
Transc		33233	515				0	
	ant.info ID 55259515T>G		ClinVar ID 16609	r,		SMIC ID SM6224		nt.info
dbSNP rs1214		ClinVar drug re	Clinical S sponse	Signif	ican	ce		MyVariant.info
SnpEff structu	Effect ral interaction v	/ariant	SnpEff HIGH	Impa	ct	gnomA 	D Adj. AF	0

ID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🕶	Ξ
				~	~	~	~	~	~	
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	А	۲	ıۍ]		•••	5 ★	
2997	Lung Non-small Cell Carcinoma	Afatinib	•	A		1C			5 ★	
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В		ıС		••••	5 ★	
879	Lung Adenocarcinoma	Afatinib	E	В		16			4*	

MyVariant.info

=

https://civicdb.org/links/evidence/2997

NC_000007.13:

g.55259515T>A

q.55259515T>G

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

https://civicdb.org/links/evidence/2997

VARIANT L858R

Last Modified by 👷 kkrysiak Last Reviewed by 🛞 EricaBarnell

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

Last Commented On by A EricaBarnel

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Assertions:

AID5 AID6

Variant Type: Missense Variant HGVS Descriptions: NC_000007.13:g.55259515T>G , NM_005228.4:c.2573T>G ,

ENST00000275493.2:c.2573T>G , and NP_005219.2:p.Leu858Arg

ClinVar IDs: 376280, 376282, and 16609

CIViC Variant Evidence Score:

- ---- (--- LOCOD

375

ID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻	
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	✓	►IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<		×	∼ 5★	
2997	Lung Non-small Cell Carcinoma	Afatinib	2	A		16			5 ★	ľ
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В	۲	1C			5 ★	
879	Lung Adenocarcinoma	Afatinib	E	В		IC)			4*	

	tart 5259515	Stop 55259	515	Ref. T	Bas	25	Var. Bases G
Transcrip ENST000	t 00275493.2						
MyVariant	.info ID	(ClinVar ID	н. 1	cos) (v68)
chr7:g.55	259515T>G		6609		COS	SM6224	4
dbSNP RS	ID	ClinVar	Clinical S	Signifi	can	ce	
rs121434	568	drug res	sponse				
						mami	AD Adj. AF
SnpEff Eff	ect		SnpEff	Impa	CL	gnom	AD AUJ. AF

Variant Coordinates

Ref. Build: GRCh37 Ensembl Version: 75

ClinVar Display Names:

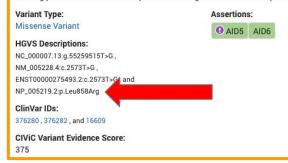
NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

https://civicdb.org/links/evidence/2997

VARIANT L858R


Last Modified by 🗣 kkrysiak 🔰 Last Reviewed by 🚇 EricaBarnell

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

Last Commented On by A EricaBarnel

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

Evidence for L858R 41 total items (showing 40) Get Data Help EID DIS CS DRUGS DESC EL A ET ED VO ER -= ~ ~ ~ ~ ~ × Lung Non-small Cell Carcinoma 0 13 ••• 5* 2994 Frlotinib 13 E 0 •••• Afatinib 5 * 2997 Lung Non-small Cell Carcinoma B 4860 Lung Non-small Cell Carcinoma Dacomitinih \odot 5* 13 E 0 Afatinib 879 Lung Adenocarcinoma 4* **EVIDENCE EID2997** Evidence Summary **Evidence Talk**

Variant Summary Variant Talk

Chr. Start	Stop	Ref. Bases	Var. Bases
7 55259515	55259515	т	G
Transcript			
ENST00000275493.	2		
MyVariant.info ID	ClinVar	ID COSMIC	D (
chr7:g.55259515T>G		COSM62	
dbSNP RSID	ClinVar Clinica	Significance	
dbSNP RSID rs121434568	ClinVar Clinica drug response		
	drug response	-	mAD Adj. AF

View MyVariant.info Details

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

https://civicdb.org/links/evidence/2997

VARIANT L858R

Last Modified by 😰 kkrysiak 🔰 Last Reviewed by 🗿 EricaBarnell

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

Last Commented On by A EricaBarnel

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one of the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitinib and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently in clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy in treating patients that failed to respond to earlier generation TKI therapies.

375

- - -

EID	DIS	DRUGS	DESC	EL 🔺	ET	ED	CS	vo	ER 🔻	Ξ
				~	~	~	~	~	~	
2994	Lung Non-small Cell Carcinoma	Erlotinib	E	A	۲	ıۍ]		•••	5 ★	1
2997	Lung Non-small Cell Carcinoma	Afatinib		A		1C			5 ★	
4860	Lung Non-small Cell Carcinoma	Dacomitinib	E	В		ıۍ]		••••	5★	
879	Lung Adenocarcinoma	Afatinib		В		IG			4*	

Ref. Build: GRCh37 Ensembl Version: 75 Chr. Start Stop **Ref. Bases** Var. Bases 55259515 55259515 G 7 т Transcript ENST00000275493.2 MvVariant.info ID ClinVar ID COSMIC ID (v68) MyVariant.info chr7:g.55259515T>G 16609 COSM6224 **ClinVar Clinical Significance** dbSNP RSID rs121434568 drug response SnpEff Effect SnpEff Impact gnomAD Adi, AF structural interaction variant HIGH

View MyVariant.info Details

Variant Coordinates

Variant Summary Variant Talk

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573 2574delinsGT 16609: c.2573T>G

dbSNP rs121434568: NC 000007.13:

q.55259515T>A q.55259515T>G

https://civicdb.org/links/evidence/2997

VARIANT L858R

Last Reviewed by 🐉 EricaBarnell Last Modified by 👂 kkrysiak

Aliases: LEU858ARG and RS121434568

Allele Registry ID: CA126713

Last Commented On by A EricaBarnel

EGFR L858R has long been recognized as a functionally significant mutation in cancer, and is one the most prevalent single mutations in lung cancer. Best described in non-small cell lung cancer (NSCLC), the mutation seems to confer sensitivity to first and second generation TKI's like gefitini and neratinib. NSCLC patients with this mutation treated with TKI's show increased overall and progression-free survival, as compared to chemotherapy alone. Third generation TKI's are currently clinical trials that specifically focus on mutant forms of EGFR, a few of which have shown efficacy treating patients that failed to respond to earlier generation TKI therapies.

Variant Type:	Assertio
Missense Variant	() AID
HGVS Descriptions: NC_000007.13:g.	ENSP000
NM_005228.4:c.2573T>G , ENST00000275493.2:c.2573T>G , and	(P/
NP_005219.2:p.Leu858Arg	·
ClinVar IDs:	(PA126715)

ClinVar IDs: 376280, 376282, and 16609

CIViC Variant Evidence Score:

375

Allele Registry ID: CA126713	Varian	t Coordinates			
a functionally significant mutation in cancer, and is one of	Ref. Build: GRCh37 E	nsembl Version: 7	5		
g cancer. Best described in non-small cell lung cancer isitivity to first and second generation TKI's like gefitinib tation treated with TKI's show increased overall and hemotherapy alone. Third generation TKI's are currently in ant forms of EGFR, a few of which have shown efficacy in arlier generation TKI therapies.	Chr. Start 7 55259515 Transcript ENST00000275493.2	Stop 55259515	Ref. Bases T	Var. Bases G	
Assertions:	MyVariant.info ID	ClinVar ID	COSMIC I	D (v68)	nfo
• AID5 AID6	chr7:g.55259515T>G	16609	COSM622	24	ant.i
ENSP00000275493.2:p.Leu858Arg	dbSNP RSID rs121434568	ClinVar Clinical S drug response	Significance		MyVariant.info
(PA1139532499)	SnpEff Effect structural interaction		Impact gnom 	AD Adj. AF	0
400745		View MyVariant.ir	nfo Details		-

Variant Summary Variant Talk

Variant Complexity in Other Resources

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

Variant Complexity in Other Resources

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

...this represents an oversimplification

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

ClinVar Variant 16609

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

ClinVar Variant 16609

ClinVar Display Names:

NM_005228.5(EGFR) 376280: c.2572_2573inv 376282: c.2573_2574delinsGT 16609: c.2573T>G

dbSNP rs121434568:

NC_000007.13: g.55259515T>A g.55259515T>G

https://www.ncbi.nlm.nih	gov/clinvar/variation/16609/
--------------------------	------------------------------

NM_005228.5(EGFR):c.2573T>G (p.Leu858Arg)

Allele ID:	31648
Variant type:	single nucleotide variant
Variant length:	1 bp
Cytogenetic location:	7p11.2
Genomic location:	7: 55191822 (GRCh38)
	7: 55259515 (GRCh37)

GRCh38 UCSC GRCh37 UCSC

HGVS:	Nucleotide	Protein	Molecular consequence
	NC_000007.13:g.55259515T>G		
	NC_000007.14:g.55191822T>G		
	NM_005228.5:c.2573T>G MANE SELECT ?	NP_005219.2:p.Leu858Arg	missense
	NM_001346897.2:c.2438T>G	NP_001333826.1:p.Leu813Arg	missense
	NM_001346898.2:c.2573T>G	NP_001333827.1:p.Leu858Arg	missense
	NM_001346899.1:c.2438T>G	NP_001333828.1:p.Leu813Arg	missense
	NM_001346900.2:c.2414T>G	NP_001333829.1:p.Leu805Arg	missense
	NM_001346941.2:c.1772T>G	NP_001333870.1:p.Leu591Arg	missense
	LRG_304t1:c.2573T>G		
	LRG_304:g.177791T>G		
	NG_007726.3:g.177791T>G		
		P00533:p.Leu858Arg	
	less HGVS		
Protein change:	L858R, L591R, L805R, L813R		
Other names:			
Canonical SPDI: 🕜	NC_000007.14:55191821:T:G		
Functional consequence:	.5.8		
Global minor allele frequency (GMAF):	-		
Allele frequency:			
Links:	ClinGen: CA126713		
	Genetic Testing Registry (GTR): GTR000560	812	
	UniProtKB: P00533#VAR_019298		
	OMIM: 131550.0002		
	dbSNP: rs121434568		
	PharmGKB Clinical Annotation: 981420042		

PharmGKB Clinical Annotation: 981475838

PharmGKB Clinical Annotation: 981475880

Not Just CIViC and ClinVar

CIViC

S ClinVar

Not Just CIViC and ClinVar

CIViC


S ClinVar

Allele Registry

Not Just CIViC and ClinVar

GA4GH Variation Representation Specification

Global Alliance for Genomics & Health Collaborate. Innovate. Accelerate.

1.2.0.rc0

Search docs

Introduction

Terminology & Information Model Schema

Implementation Guide

Releases

Appendices

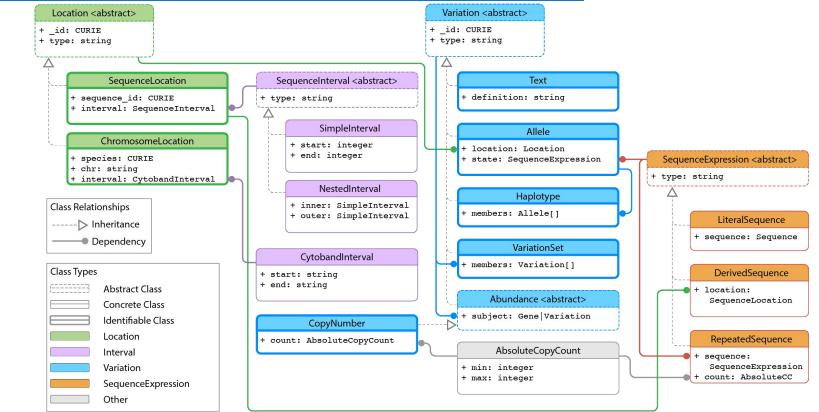
Read the Docs

v: 1.2.0.rc0 -

GA4GH Variation Representation Specification

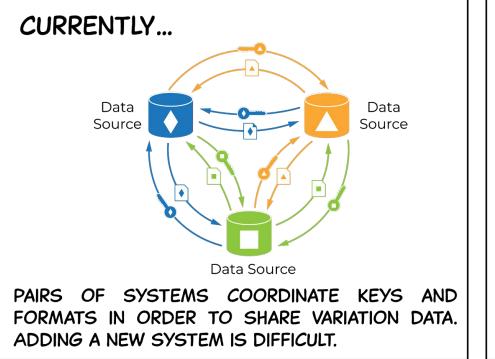
The Variation Representation Specification (VRS, pronounced "verse") is a standard developed by the Global Alliance for Genomic Health to facilitate and improve sharing of genetic information. The Specification consists of a JSON Schema for representing many classes of genetic variation, conventions to maximize the utility of the schema, and a Python implementation that promotes adoption of the standard.

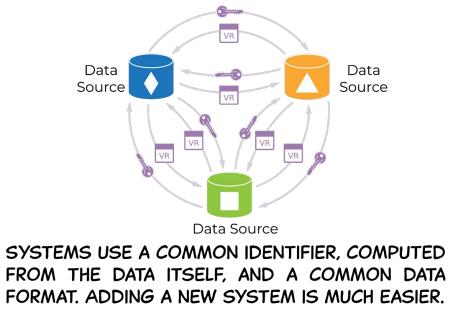
Citation


The GA4GH Variation Representation Specification (VRS): a Computational Framework for the Precise Representation and Federated Identification of Molecular Variation. Wagner AH, Babb L, Alterovitz G, Baudis M, Brush M, Cameron DL, ..., Hart RK. bioRxiv. 2021. doi:10.1101/2021.01.15.426843

- Introduction
- Terminology & Information Model
 - Information Model Principles
 - Variation

https://vrs.ga4gh.org/en/1.2.0.rc0/


Extensible Information Model (v 1.2 and going)



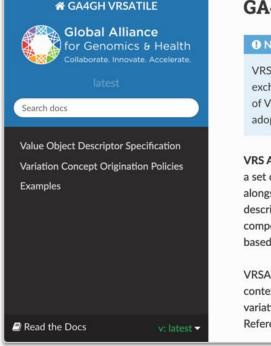
VRS Objects are minimal Value Objects

WITH THE VR SPECIFICATION ...

Rendering by Stephanie Li

Sounds good, but what about ...




... sharing the non-minimal variant elements ?

... clarifying the originating variant context?

VARIANT L8	58R			Varia	ant Summa	iry 🐧	/ariant Talk	
Aliases: LEU858ARG and RS121434 EGFR L858R has long been recogniz the most prevalent single mutations (NSCLC), the mutation seems to con and neratinib. NSCLC patients with 1 progression-free survival, as compar	zed as a functionally signific: s in lung cancer. Best describ ifer sensitivity to first and se this mutation treated with Th red to chemotherapy alone. on mutant forms of EGFR, a	cond generation TKI's like gefitinib KI's show increased overall and Third generation TKI's are currently in few of which have shown efficacy in	Representative Varian Ref. Build: GRCh37 E Chr. Start 7 55259515 Transcript ENST00000275493.2	insembl Versio Stop 55259515	on: 75 Ref. Bi T	ases	Var. Bases G	
Variant Type: Missense Variant HGVS Descriptions: Nc_000007.139_55259515T>G, NM_005228.4:.2573T>G, ENST00000275493.2:2573T>G, and NP_005219.2:p.Leu858Arg ClinVar IDs: 376280, 376282, and 16609	Assertions:		MyVariant.info ID chr7:g.55259515T>G dbSNP RSID rs121434568 SnpEff Effect structural interaction		9 C ical Signific se pEff Impact GH	gnom/ -		Multariant info
CIViC Variant Evidence Score: 375								

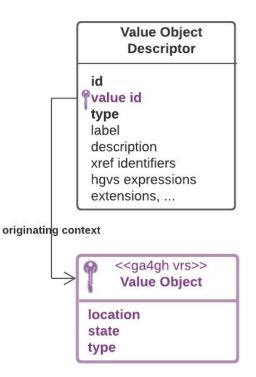
NM_005228.5(EGFR):c.257	73T>G (p.Leu858Arg)		
Allele ID:	31648		
Variant type:	single nucleotide variant		
Variant length:	1 bp		
Cytogenetic location:	7p11.2		
Genomic location:	7: 55191822 (GRCh38) GRCh38 UCSC		
	7: 55259515 (GRCh37) GRCh37 UCSC		
HGVS:	Nucleotide	Protein	Molecular consequence
	NC_000007.13:g.55259515T>G		•
	NC_000007.14:g.55191822T>G		
	NM_005228.5:c.2573T>G MANE SELECT ?	NP_005219.2:p.Leu858Arg	missense
	NM_001346897.2:c.2438T>G	NP_001333826.1:p.Leu813Arg	missense
	NM_001346898.2:c.2573T>G	NP_001333827.1:p.Leu858Arg	missense
	NM_001346899.1:c.2438T>G	NP_001333828.1:p.Leu813Arg	missense
	NM_001346900.2:c.2414T>G	NP_001333829.1:p.Leu805Arg	missense
	NM_001346941.2:c.1772T>G	NP_001333870.1:p.Leu591Arg	missense
	LRG_304t1:c.2573T>G LRG_304:g.177791T>G		
	NG_007726.3:g.1777917>G		
	110_001120.3.g.1111311-0	P00533:p.Leu858Arg	
	less HGVS	1 00000101200000.08	
Protein change:	L858R, L591R, L805R, L813R		
Other names:	-		
Canonical SPDI: @	NC_000007.14:55191821:T:G		
Functional consequence:	-		
Global minor allele	-		
frequency (GMAF):			
Allele frequency:	-		
Links:	ClinGen: CA126713		
	Genetic Testing Registry (GTR): GTR000560	812	
	UniProtKB: P00533#VAR 019298		
	OMIM: 131550.0002		
	dbSNP: rs121434568		
	PharmGKB Clinical Annotation: 981420042		
	PharmGKB Clinical Annotation: 981475838		
	PharmGKB Clinical Annotation: 981475880		
	Thannesto Chinede Annotation, 361413660		

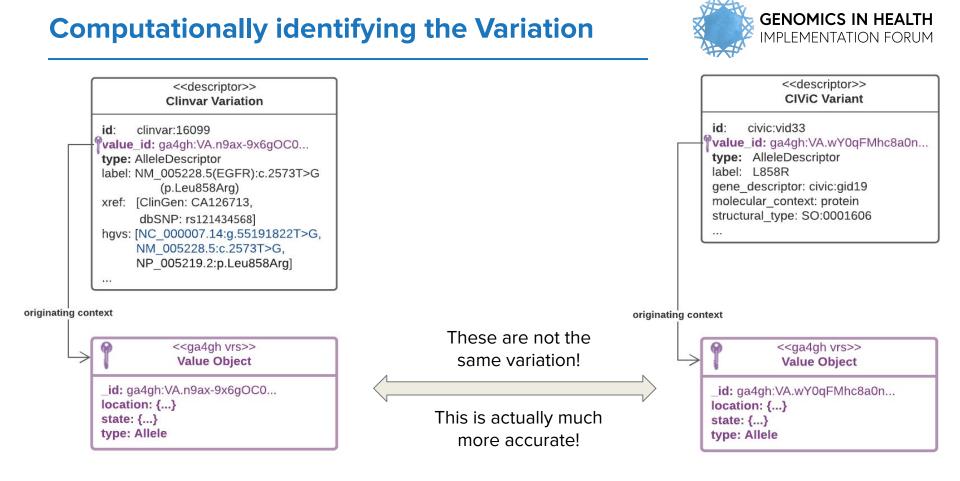
GA4GH VRSATILE

Note

VRSATILE is as Driver Project initiative to guide extending VRS in practical, real-world data exchange. The contents of this resource are not a GA4GH standard. As the demonstrated utility of VRSATILE specification components become clear through Driver Project feedback and adoption, we will advance those components as proposed standards.

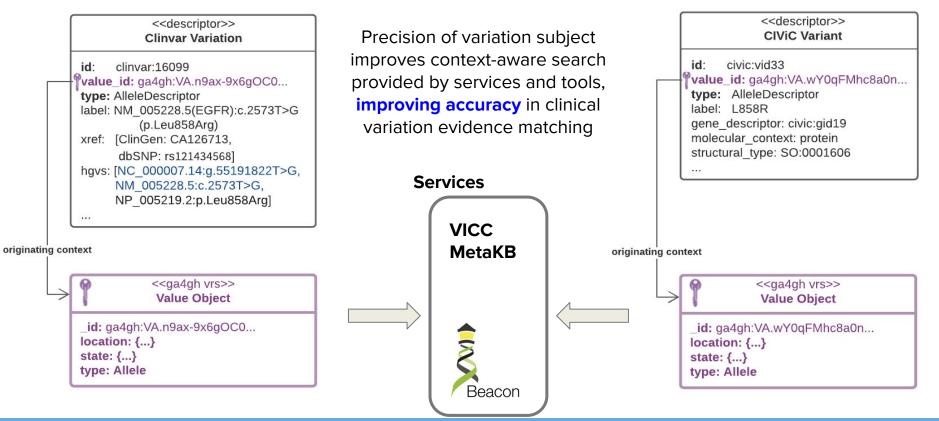
VRS Added Types for Interoperable Loguacious Exchange (VRSATILE; prounounced "versatile") is a set of proposed extensions for VRS to enable interoperable exchange of common descriptive data alongside variation concepts. Common examples of this are reference sequence ids, HGVS descriptors, associated concept ids, and community aliases such as EGFR vIII. VRSATILE and its components are in a draft state and a reflection of current Driver Project interoperability efforts based on the VRS standard.


VRSATILE also enables simplification of "aggregate" variation concepts that include multiple contextual forms. Examples of aggregate variation include the concepts represented by ClinVar variation IDs, CIViC variation IDs, ClinGen Allele Registry Canonical Allele IDs, and dbSNP Reference SNP IDs.


Reproducible and **descriptive** normalization of variation concepts to VRS through resource-defined VCOPs. https://vrsatile.readthedocs.io

Real world, practical application of VRS

GENOMICS IN HEALTH


- VRS value objects **define** the variation
- Descriptors are flexible transfer mechanisms that reduce refactoring costs and enable VRS standards use.
- The Variation Concept Origination Policy (VCOP) clarifies the originating context variation from 3rd party resources.
 - e.g. CIViC, ClinVar, ClinGen A/R, MetaKB, ...

Computationally identifying the Variation

VRS Webinar / Workshop in June 2, at 19:00 UTC

- **How-to** transform clinical evidence to the GKS framework
- **Survey** of available tools and services
- **Demonstration** using example datasets

Sign up for the webinar at <u>http://bit.ly/vrs-webinar-registration</u> !

Acknowledgements

ClinGen Data Platform

Tristan Nelson Kyle Ferriter Terry O'Neill

VICC MetaKB Team

Brian Walsh Xuelu "Jeff" Liu Kori Kuzma James Stevenson Jiachen Liu GA4GH GKS WS
Reece Hart
Robert Freimuth
Matthew Brush
Melissa Cline
Helen Shuilenburg

...and many others!

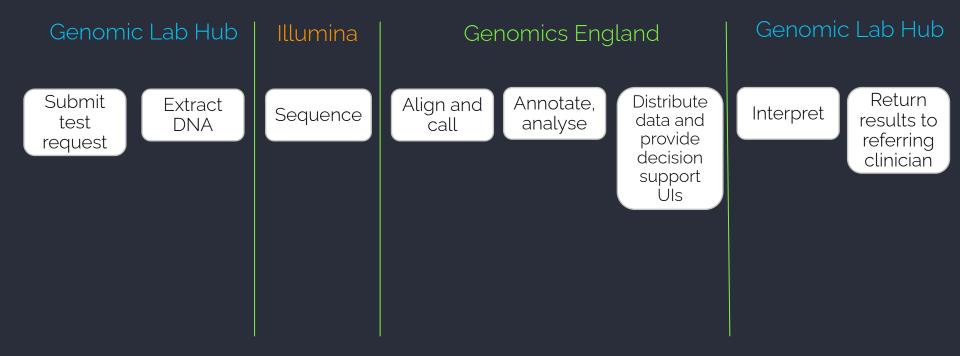
U41 HG006834, U41 HG009649 U41 HG009650, K99 HG010157

National Human Genome Research Institute

Getting Clinic Ready

Genomics in Health Implementation Forum 10 03 2021

Accrediting Whole Genomes for Patient Care


Dr Ellen Thomas

Clinical Lead for Rare Disease and Clinical Safety Officer, Genomics England Clinical Advisor, Genomics Unit, NHS England and Improvement Consultant in Clinical Genetics, Guy's and St Thomas' NHS Trust

Genomics England's place in the genomic diagnostic ecosystem

Overview of regulatory ecosystem

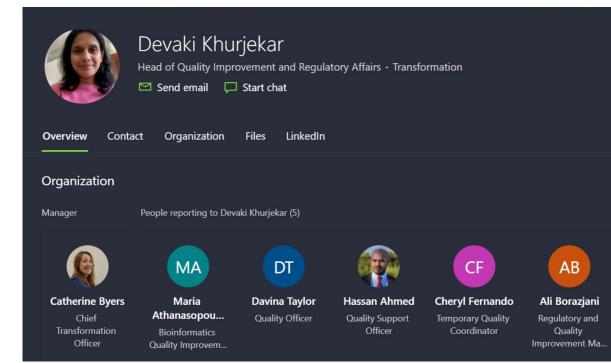
Areas of focus

DCB 0129 is an NHS Digital standard

• Focuses more on test order system / front end of the National Genomic Information Service (NGIS)

ISO 15189 – audited by UK Accreditation Service

• Assesses GEL as a diagnostic laboratory


ISO 13485 – audited by British Standards Institution

• Focuses on development of software as a medical device

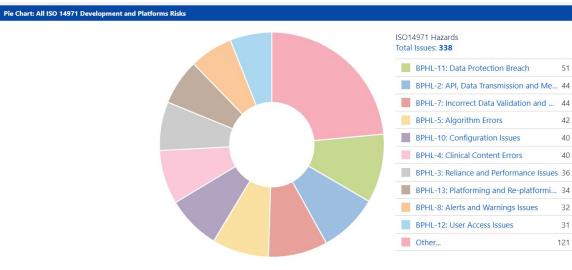
CE / UKCA marking – working towards self-certification

• Relevant to the bioinformatics pipeline as a medical device

Staffing quality management and regulatory compliance

This is the (crucial!) tip of the iceberg – all 82 members of the Healthcare Tribe contribute to our accreditation work

216


Common themes across all schemes

- Quality management system designed to meet requirements of all accreditations and applicable regulations
- Documentation standards versioning, authorization
- Training management competency demonstration
- Hazard identification and risk management system
- Incident tracking, root cause analysis and corrective and preventive actions
- Rolling internal audit programme tracking compliance with each standard's requirements – also used with 3rd party suppliers
- Participation in relevant EQA schemes (some adaptation sometimes needed)

Risk management system

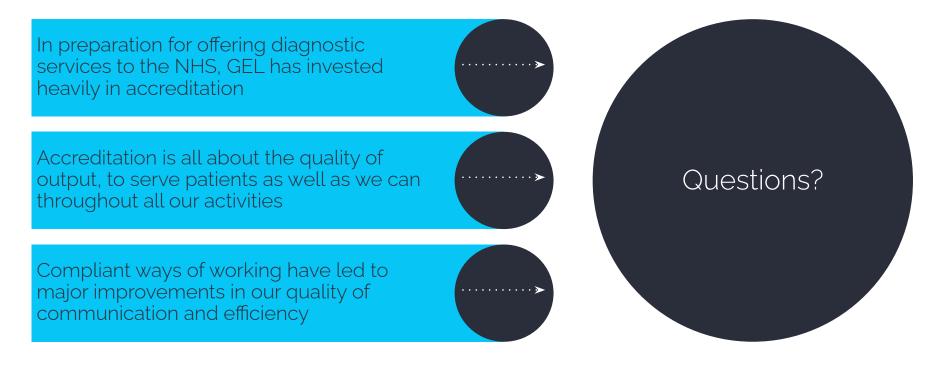
Co

onse	equence Catego	ry Interpretation				
atas	CID-ADI	CIPAPI-811 Health checks on repl h checks on replica c				
	🖌 Edit 🛛 Q C	omment Assign More 🗸	Open Discard	led (2) CSC	1	
	✓ Details					
	Type:	ISO Risk Assessment		Status:		
ajor	Priority:	😻 3. Medium		Resolution:		
ajor	Affects Version,	's: None		Fix Version/	5	2
	Component/s:	None				
	Labels:	None				
	Software Safety Classification:	B: possibility of indirect h	arm to patient			
	Sprint:	InterPlat 15.3 (2/12-15/12	2)			
	Existing Contro	ls: Replicadb is using a post	gresdb instance ra	ther than a we	eka me so we arready nave a replica(slave) database.	
	Treatment:	Mitigate				
	Treatment plan:	Update health check end the weka replica db. Shov			pi-test to have a weka based replica db. Shut off a datadog error appears.	
	Treatment Evide	ence: DR report with health che	eck and haproxy sł	nutting down s	shown here:	
	Failure Effect:	Currently, without the we product inaccessible.	ka/haproxy PR, the	ere is no 503 s	ervice unavailable. This change will make the	
	Failsafe:	None				
	Probability:	Likely (< 1 month)				
	Impact:	Major				
	Residual Probal	bility: Rare (<1 year)				
	Residual Impac	t: Major				
	Exposure:	4				
	Residual Exposu	ıre: 2				

onal	0	1/E	1/E	1/E	2/D	2/D
e (<	0	1/E	1/E	1/E	1/E	1/E
	0	0	0	0	0	0
	Nil	Minor	Significant	Considerable	Major	Catastrophic

Accreditation challenges in genomic medicine

Accreditation at the cutting edge:


- Genomics is constantly evolving, often lacks certainty, and one size never fits all
- Accreditation is founded on standardization, truthsets, and painstaking change management
- When do you introduce a new discovery or technology for diagnostic use?

Subject to changes in the wider environment, e.g. Brexit has led to changes in the CE / UKCA certification process

Addressing these challenges

- Develop internal truthsets, e.g. validation using known diagnoses from the 100,000 Genomes Project
- Employ or contract an experienced quality team, familiar with your national regulatory environment
- Keep evolving and learning from non-conformities, incidents and risk assessments
- Ensure the whole organization buys into the accreditation process
 - Leadership support crucial for resourcing
 - Safety systems stand or fall on those who operate all elements daily

Conclusions

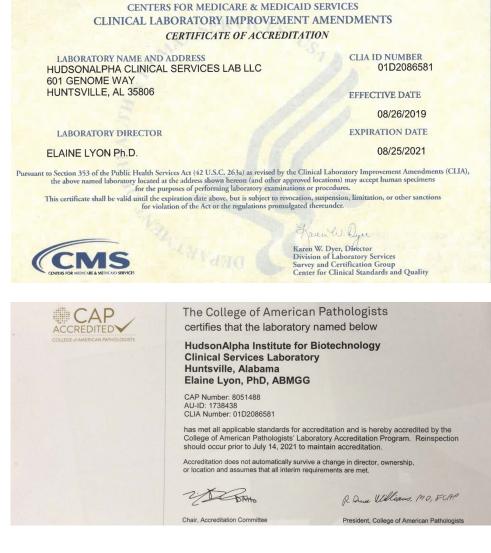
Application of CLIA/CAP standards to genomic testing David Bick, M.D.

Application of CLIA/CAP standards to genomic testing

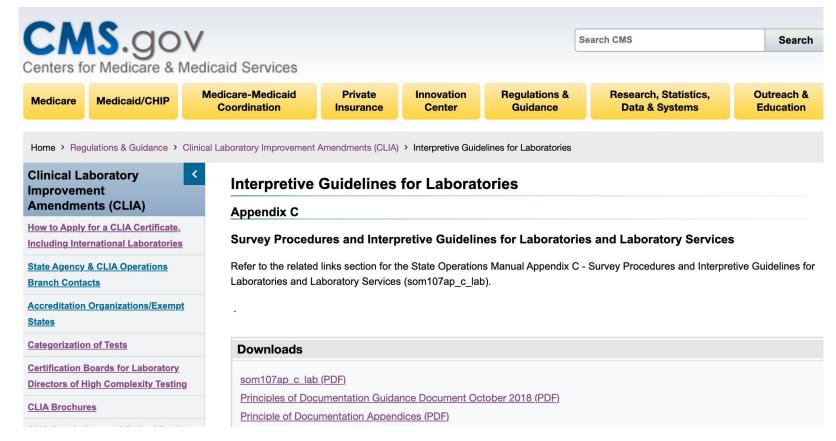
Global Health Implementation Forum 3-10-21

David Bick, M.D.

Smith Family Clinic for Genomic Medicine HudsonAlpha Clinical Services Laboratory HudsonAlpha Institute for Biotechnology


Disclosures:

- •Chief Medical Officer and Faculty Investigator, HudsonAlpha Institute for Biotechnology
- •Medical Director, The Smith Family Clinic for Genomic Medicine, LLC
- Associate Director, The HudsonAlpha Clinical Services Laboratory, LLC
- •Member, Genomics England Science Advisory Committee
- •Consultant, Northwestern Mutual Life Insurance Company
- Director, iRepertoire Molecular Laboratories, Inc



U.S. clinical laboratory regulation: CLIA and CAP

- Clinical Laboratory Improvement Amendments of 1988 (CLIA)
 - Congress amended Public Health Services Act
 - Federal program for certification and oversight of clinical laboratory testing
 - Applies to all laboratory testing (except research) performed on humans in the U.S
- Centers for Medicare & Medicaid Services (CMS) responsible for CLIA
 - Approximately 260,000 laboratory
 - Every lab required to have a certificate
- College of American Pathologists (CAP) Laboratory Accreditation Program
 - CMS granted the CAP deeming authority
 - A CAP inspection substitute for CMS inspection
 - CAP accreditation is optional

CLIA – onsite inspection

- •Onsite inspection every 2 years Each state performs inspections
- •International Laboratory CLIA Certification Process
- Laboratory directors must meet education, training and experience requirements

State Operations Manual Appendix C - Survey Procedures and Interpretive Guidelines for Laboratories and Laboratory Services

> Table of Contents (Rev. 166, 02-03-17)

Transmittals for Appendix C

SURVEY PROTOCOLS

Introduction

The Outcome-Oriented Survey Process

I. Identifying Sources of Information A. Scheduling Surveys B. Announced and/or Unannounced Surveys C. Pre-Survey Preparation **II.** Entrance Interview III. Information Gathering A. Organizing the Survey B. Observation of Facilities and Processes C. Interviews D. Record Review IV. Assessing Outcome or Potential Outcome V. Regulatory Compliance Decision VI. Exit Conference VII. Development of the Statement of Deficiencies A. Citing Standard-Level Deficiencies **B.** Citing Condition-Level Deficiencies C. Choosing the Appropriate Citation **D.** Mandatory Citations E. Allegation of Compliance/Plan of Correction VIII. Survey Report Documentation and Data Entry IX. Additional Information A. Counting Tests B. Conducting Surveys of Multiple Testing Sites under One Certificate C. Conducting Surveys of Waived Tests D. Conducting Surveys of Certificate for PPM Procedures

https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/som107ap_c_lab.pdf

ISTITUTE FOR BIOTECHNOLOGY

CLIA – inspection process

•418-page manual describes inspection process

- Inspect facility
- Interview staff
- Review lab records & proficiency testing
- Systems quality assessment
- Set of standards for assessment

EXAMPLE

§493.1235 Standard: Personnel competency assessment policies

As specified in the personnel requirements in subpart M, the laboratory must establish and follow written policies and procedures to assess employee and, if applicable, consultant competency.

Interpretive Guidelines §493.1235

Refer to §§493.1413(b)(8) and 493.1451(b)(8) for specific testing personnel competency requirements and refer to §493.1407(e)(12) and §493.1445(e)(13) for establishing policies to monitor each individual's competency and identify remedial training or continuing education needs. Cite deficiencies at this location when the laboratory has developed but is not following personnel competency policies and procedures. Competency assessment applies to all persons that perform patient testing and/or report patient test results, including but not limited to, technical and clinical consultants, technical supervisors, general supervisors and other laboratory staff.

CAP Laboratory Accreditation Program

All Common

- Proficiency testing
- Procedure manuals
- Specimen collection and handling
- Quality management
- Reporting of results
- Reagents
- · Instruments and equipment maintenance/function checks
- Thermometers and temperature-dependent equipment
- Pipettes and analytical balances
- Waived test implementation
- Test method validation/verification-nonwaived tests
- Individualized quality control plan

Laboratory General

- Quality management
- Specimen collection
- · Chain-of-custody specimen collection and handling
- Direct-to-consumer testing
- Result reporting
- Quality of water
- Laboratory computer services
- Telepathology and remote data assessment
- Whole slide imaging
- Personnel
- Physical facilities
- Laboratory safety
- California laboratory licensure requirements

Director Assessment

- Laboratory director gualifications
- Laboratory director responsibilities

Molecular Pathology

- Clinical molecular genetics testing, including oncology, inherited disease, pharmacogenomics, HLA tying, forensic identity, and relationship testing applications
- Molecular assay validation
- Methods, such as electrophoresis, PCR, arrays, FISH, and ISH, digital image analysis, and sequencing
- Next-generation sequencing, including noninvasive screening of maternal plasma to detect fetal trisomy
- Hematopoietic progenitor cell engraftment monitoring
- CAP uses CLIA standards but adds granularity & specificity
 - Onsite inspection every other year like CLIA but with self inspection between onsite inspections
- Clinical genomics laboratory
 - Our lab performs whole genome sequencing, tumor molecular testing, microarray, Sanger sequencing, qPCR
 - 4 CAP checklists: All Common, Director Assessment, Laboratory General, Molecular Pathology
 - Molecular Pathology is one of 21 discipline-specific accreditation checklists
 - Total of 517 checklist items on the 4 lists

Example CAP checklist item

Approved MOL.36118 NGS Lower Limit of Detection Under <u>Clinical Services Lab (2021 On Site Inspection)</u> Pre-Inspection Phase » <u>Molecular Pathology</u>

2

Available actions for this item

Phase

Requirement

Evidence of Compliance

Testing is performed during assay validation to establish the lower limit of detection for sequencing performed on mixed populations.

* Records of validation used to establish lower limit of detection for sequencing performed on mixed populations AND

* Written approval of validations, revalidations and/or confirmation studies AND

* Records of review of referral laboratory validations, if applicable

The NGS limit of detection (LOD) for variants consists of two data points: 1) the minimum required depth of coverage at the variant site and 2) minimum variant allele fraction. Determination of the LOD is relevant to several clinical diagnostic scenarios. These include, but are not limited to, detection of somatic variants in tumor samples and cell free DNA, germline variant detection in chimerism and mosaicism, maternal blood screening for fetal trisomy, detection of antimicrobial resistance mutations, microbiome analyses, identification of pathogens by targeted or metagenomic approaches, and identification of the presence/absence of clinically relevant microbial genes.

Lower limit of detection for variants may vary based on variant type (eg, single nucleotide variants, indels, copy number variants and other structural variants, such as translocations and inversions) or target characteristics.

In the case of microbial testing, LOD may be influenced by organism genome size. During validation, determination of LOD is required for each variant and microbial target type that the assay is intended to detect. For antiviral drug resistance testing, determination of LOD must take into account the virus load and variant allele fraction.

Validation of LOD requires inclusion of samples whose variant allele fraction or percentage has been determined by orthogonal methods. Cell line mixtures, plasmid spike in studies, and the use of in silico NGS data sets may augment, but not supplant, the use of patient samples.

Note

MOL.36117 MOL.36123

Training, competency documentation

		U, I		Assigned	Completed	Expiration	
	User	Documentation Type	Status	On	On	Date	Files
۲	Bick, David	ABMGG Certification	Completed	8/11/2020	1/1/2020 Date entered by user	n/a	David Bick - ABMGG Certification
0	Bick, David	Annual HIPAA Training Record	Completed	8/11/2020	8/27/2020	n/a	David Bick - HIPAA Training Record
0	Bick, David	Annual Safety Training	Completed	8/11/2020	9/2/2020 Date entered by user	n/a	David Bick - Safety Training
0	Bick, David	CITI Training Records	Completed	8/11/2020	9/7/2020	2/2/2022	David Bick - CITI Training Records
0	Bick, David	CSL HIPAA Compliance Program Agreement	Confirmed	5/17/2017	2/28/2018	n/a	CSL HIPAA Compliance Program Agreement
0	Bick, David	Curriculum Vitae/Resume	Completed	8/12/2020	2/25/2021	n/a	David Bick - CV David Bick - CV/Resume
•	Bick, David	Diploma/Transcript	Confirmed	5/17/2017	6/5/2017	n/a	Academic Diploma
0	Bick, David	Hepatitis B Vaccination Form	Completed	8/12/2020	8/27/2020	n/a	David Bick - Hepatitis B Vaccination Form
0	Bick, David	Job Description	Completed	2/8/2021	2/8/2021	n/a	David Bick - Job Description (Associate Clinical Laboratory Director) David Bick - Job Description (Clinical Consultant)
0	Bick, David	Letter of Delegation	Completed	8/12/2020	6/4/2020 Date entered by user	n/a	David Bick - Letter of Delegation
0	Bick, David	Licensure and Certification	Completed	3/16/2020	10/5/2020	n/a	Alabama License (expires 2020-12-31) Wisconsin License (expires 2021-10-31) ABMGG Certificate 2020 Tennessee License (expires 2021-05-31) Alabama Controlled Substance License (expires 2020-12- 31) NYSDOH Certification 2020-21 (expires 9/2021)
0	Bick, David	Metrics Report Review Training Checklist	Completed	8/11/2020	1/17/2020 Date entered by user	n/a	David Bick - Training Checklist - Metrics Report Review
0	Bick, David	Safety Orientation	Completed	8/12/2020	6/6/2017 Date entered by user	n/a	David Bick - Safety Orientation
0	Bick, David	Supervisor Competency Assessment Report	Completed	8/13/2020	6/2/2020 Date entered by user	n/a	David Bick - Supervisor Competency Assessment (2018- 06-12) David Bick - Supervisor Competency Assessment (2020- 06-02)
0	Bick, David	Tertiary Analysis Training & Competency Assessments	Completed	8/11/2020	6/4/2020 Date entered by user	n/a	David Bick - Training Experience - Tertiary Analysis David Bick - 6-Month Competency Assessment - Tertiary Analysis David Bick - Annual Competency Assessment - Tertiary Analysis David Bick - Annual Competency Assessment - Tertiary Analysis

HUDSONALPHA INSTITUTE FOR BIOTECHNOLOGY

Quality Management System

Quality Management System(QMS) program provides, manages, and secures quality laboratory testing services that will ensure accurate patient results and will meet customer requirements

Quality Management System

Program

Quality Policy, Goals, and Objectives **Quality System Essentials Focus** QSE 1 – Organization QSE 2 – Personnel QSE 3 – Purchasing and Inventory QSE 4 – Equipment **QSE 5 – Process Control** QSE 6 – Documents and Records **QSE 7** – Nonconforming Event Management **QSE 8** – Assessment **QSE 9** – Continual Improvement QSE 10 - Service and Satisfaction QSE 11 - Facilities and Safety **QSE 12 - Information Management Quality Management Quality Records**

Quality Management program

Policies

Quality Management Committee (QMC) Personnel **Quality Control** Quality Assurance Turnaround time (TAT) monitoring Reagent phase-In and new lot testing Event Reporting Accessioning NGS/Bioinformatics **Tertiary Analysis Global Screening Array** TagMan Pharmacogenetic Variant Panel Sanger Sequencing IT Quality Improvement (QI) Programs **Proficiency Testing**

Quality Assurance program

Procedures

Quality Indicators Pre-Analytical Metrics Analytical Metrics General Analytical Metrics Genome Sequencing Analytical Metrics Global Screening Array Analytical Metrics TaqMan Analytical Metrics Sanger Sequencing Analytical Metrics Post-Analytical Metrics General Post-Analytical Metrics Genome Sequencing Post-Analytical Metrics Global Screening Array Post-Analytical Metrics TaqMan Post-Analytical Metrics Sanger Sequencing Post-Analytical Metrics Quality Indicator Report

Effort/cost associated with CAP/CLIA maintenance

- 1/3 of one individual's time to CAP/CLIA tasks
- Cost of proficiency testing program
- Personnel time spent in ongoing training (safety, HIPAA..) and competency
- Preparation for CAP/CLIA inspection this year:
 - 2 hour meeting each week for 3 months
 - 3 directors and 6 other lab staff
 - Additional time 'between meeting' for the staff to create policies, procedures etc...

Molly Schroeder, PhD. perfectly summed up the clinical laboratory regulatory framework

"CAP is a lifestyle"

Building a Framework for the Adoption of GA4GH Standards

Creating a European Maturation Model through GA4GH Standards

Melissa Konopko (Melissa.Konopko@elixir-europe.org)

Scientific Product Manager

www.elixir-europe.org

Access 1M genomes across borders

- Coordinated, secure, federated environment will enable population scale genomic, phenotypic, and biomolecular data to be accessible across international borders to support personalised medicine
- Lessons learned & solutions developed should be taken from existing infrastructures and ongoing data sharing efforts in cancer, population genetics & rare disease areas
- This will rely on a suite of interoperable standards...

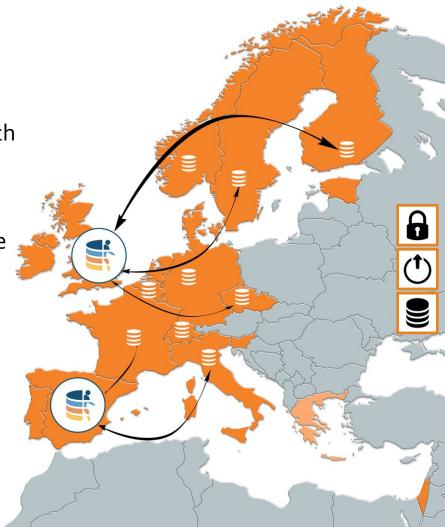
Roadmap Published: 27 August 2019

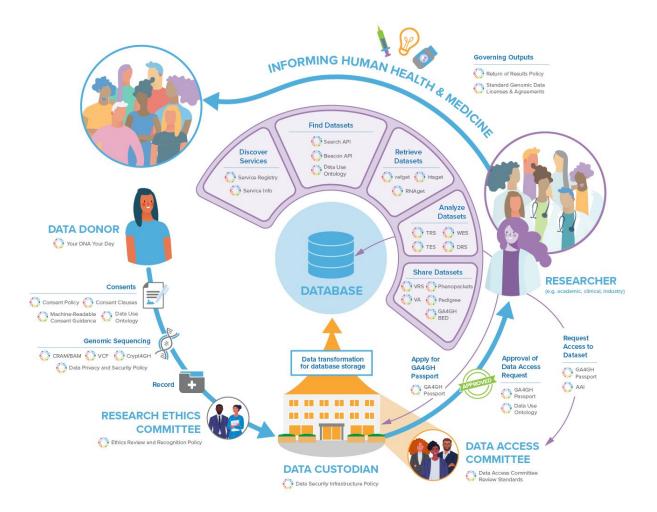
Leveraging European infrastructures to access 1 million human genomes by 2022

Gary Saunders, Michael Baudis, [...] Serena Scollen 🗖

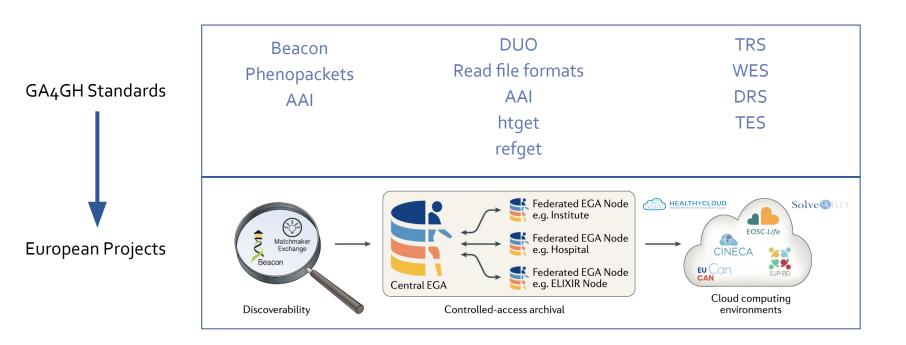
Nature Reviews Genetics (2019) Download Citation 🕹

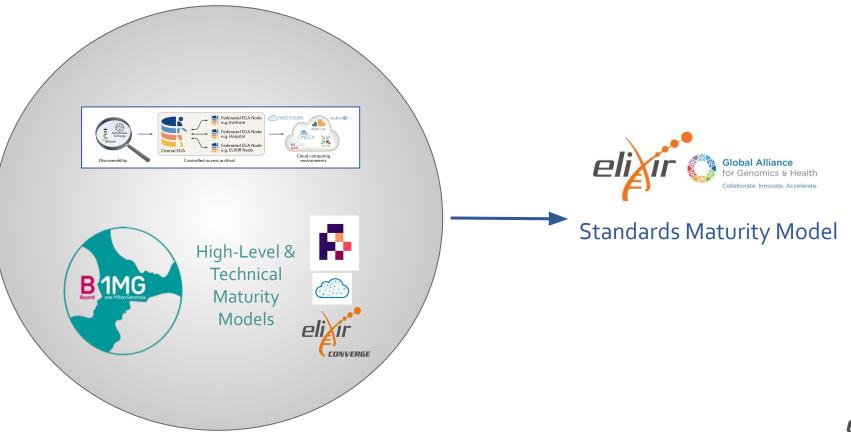
Abstract


Human genomics is undergoing a step change from being a predominantly research-driven activity to one driven through health care as many countries in Europe now have nascent precision medicine programmes. To maximize the value of the genomic data generated, these data will need to be shared between institutions and across countries. In recognition of this challenge, 21 European countries recently signed a declaration to transnationally share data on at least 1 million human genomes by 2022. In this Roadmap, we identify the challenges of data sharing across borders and demonstrate that European research infrastructures are well-positioned to support the rapid implementation of widespread genomic data access.

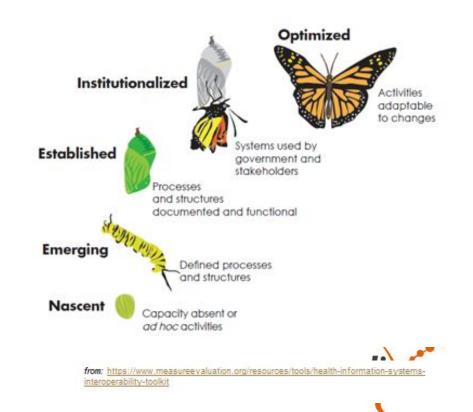

https://t.co/87fYMyPIGO

Federation of human genome data


- Many national datasets from human research participants needs to be stored locally
- ELIXIR developing a federated infrastructure
- Based the GA₄GH suite of interoperable, reusable, adopted, and fit-for-purpose standards



Connecting Europe via Standards-Based Federation


Connecting Europe via Standards-Based Federation

Maturity Model Concept

- A maturity level model is an instrument to assess and continually improve organizational processes
- Concept of the maturity level models consists of a sequence of discrete maturity levels for specific domains
- Maturity level models are indicators of progress, identifying weaknesses to generate an improvement plan

Slide Courtesy of Astrid Vincente

Maturity Model Basic Format

	Level				
Functional Area	Level 1	Level 2	Level 3	Level 4	
Security	DSIP	Breach Response	Crypt4GH	Malfeasance Detection	
Policy	The Framework	DACReS	Conse Policy	Familial Consent Clauses	
Data Storage	VCF	SAM, BAM	CRAM		
Discoverability	Beacon DUO	NA	Search		
Data Access	DUO	Pa sports	AAI	Machine Readable Consents	
			TRS WES	VA RNAget	
Retrieval & Analysis	Phenopackets	HTSget	VRS	DRS	

A sample of potential functional areas and levels with associated standards.

B1MG vs ELIXIR:GA4GH Maturity Models

High-Level Maturity Model

- Focused on Health Care Sector
- Covers ELSI & Technical domains
- High level view without defining specific solutions
- Intended for decision-makers at the national or regional level

Standards Maturity Model

- Intended for both Health Care & Research sectors
- Mainly Technical with some Policy standards
- Specific & detailed to provide technical guidance and encourage international interoperability
- Intended for technical implementers who need to turn high level decisions into action

ELIXIR:GA4GH Maturity Model

- Supports technical implementers by
 - Translating organisational genomic and associated metadata sharing goals into clear standards requirements
 - Linking out to guidance such as the GA4GH Starter Kit and standards documentation
 - Plans to include costing information for organisational planning and grant writing
- Standards chosen and leveled by
 - Inclusion in ELIXIR implementations, potentially by version
 - Interdependency and connection from the GA4GH Connection Demos (FASP) and Starter Kit projects
 - Alignment to B1MG, FAIRplus, ELIXIR CONVERGE, and HealthyCloud maturity models
- Aligns to the future vision of a pan-European (and global) federated human health data network to connect across ELIXIR Nodes and beyond

ELIXIR:GA4GH MM: What's New?

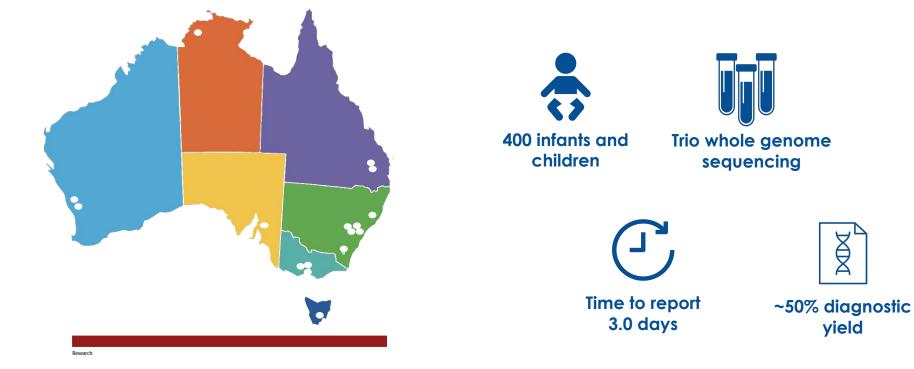
- Broadened alignment across projects: B1MG, ELIXIR Converge, HealthyCloud & FAIRplus
- Planned interface with the GA₄GH FASP and Starter Kit projects to provide guidance from policy level all the way down to detailed implementation guidance

- Clarified user experience goals: Technical solutions to policy demands
- Expect to present a draft on GA4GH Plenary

Any Questions?

bit.ly/ELIXIRGA4GHSurvey

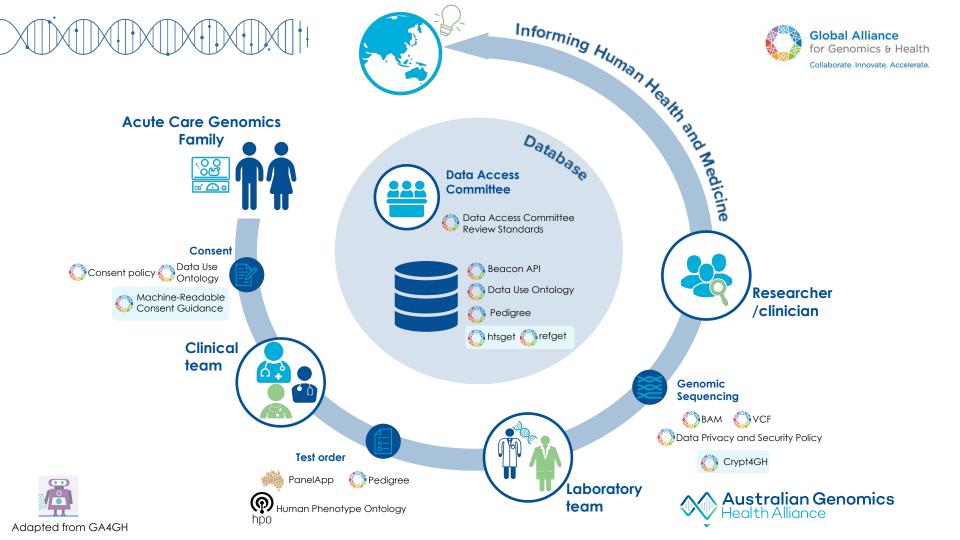
End-to-End Implementations of GA4GH Standards


Acute Care Genomics

GA4GH Real World Implementation: Australian Genomics

Zornitza Stark

Acute Care Genomics 2018-23: Piloting a national approach



Australian Genomics

th Alliance

JAMA | Original Investigation

Feasibility of Ultra-Rapid Exome Sequencing in Critically III Infants and Children With Suspected Monogenic Conditions in the Australian Public Health Care System

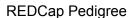
E-test order for Rare Disease

Acute Care Genomics Test Order

Clinical Information (detailed clinical information = more diagnoses!)						
Type in key clinical features in the boxes and HPO terms will be suggested. Start with the most prominent feature. Aim for 5-10 HPO terms.						
Clinical feature:	Epileptic encephalop HP:0200134 E					
Clinical feature:	Microcephaly HP:0000252 1					
Clinical feature:	Arthrogryposis multi HP:0002804 /					
Clinical feature:						
Is the onset of the condition congenital?	• Yes 🔿 No					

Pedigree and Family History

Use the tool to draw the core family unit including the proband and first degree relatives, in particular noting consanguinity and any first degree relatives who are similarly affected as this will assist us in genomic analysis.


Only include extended family members if there is a significant family history of a genetic condition relevant to the analysis.

Pedigree:

Click on the diamond shape to draw the core family unit. Press 'Save' when finished.

The finished pedigree will not display on the form, but will be stored separately.

Plugin: <u>https://github.com/aehrc/redcap_pedigree_editor</u>

FHIR OWL (supports Human Ancestry Ontology in

REDCap): https://github.com/aehrc/fhir-owl

REDCap FHIR Terminology Server

Plugin: https://github.com/aehrc/redcap_fhir_ontology_provider

<u>r</u> 🧷 FHI

E-test order for Rare Disease

Acute Care Genomics Test Order

Virtual Panels for this Analysis						
Please select relevant virtual panels to guide the analysis.						
All patients will have Mendeliome analysis, including analysis for copy number variants and variants in the mitochondrial genome.						
For details on the gene content of panels, please go to PanelApp Australia.						
Virtual Gene Panel 1:	Genetic Epilepsy					
Virtual Gene Panel 2:	Microcephaly					
Virtual Gene Panel 3:	Arthrogryposis					

Supporting evidence-based diagnostic practice

E-consent for Rare Disease

Acute Care Genomics Test Order

CONSENT FORM FOR GENOMIC TESTING AND PARTICIPATION IN RESEARCH

Please select each box to indicate that you have read each point.

About the Test

- Genomic test results are based on current knowledge, which may change in the future.
- If I change my mind, I can choose not to be told about the result.

* must provide value

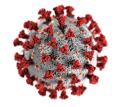
I agree with the points above

Potential Outcomes

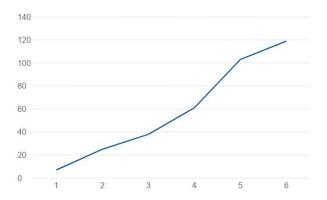
- This test might find a cause for the condition(s).
- This test might not find a cause for the condition(s).
- The result might be of 'unknown significance', which means it cannot be understood today.
- There is a chance that genomic testing could find other medical conditions (incidental findings).
- · Genomic testing may show unexpected family relationships.
- Further testing or information sharing may be needed to finalise the result.

* must provide value

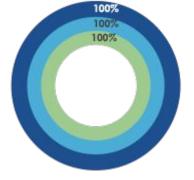
I agree with the points above



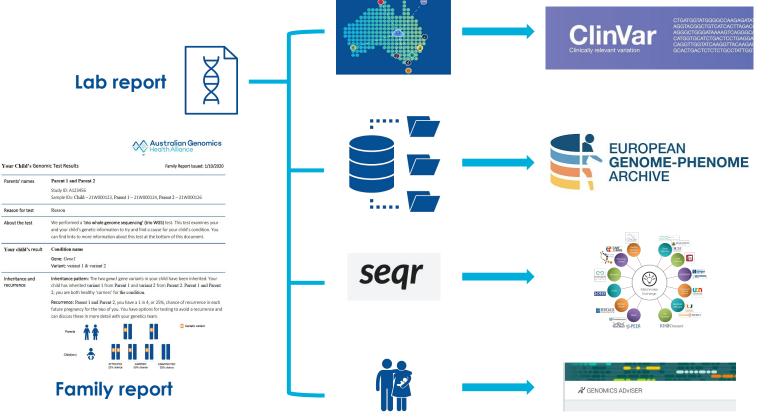
XIXIXIXIII Improved clinical data capture



4min 35sec



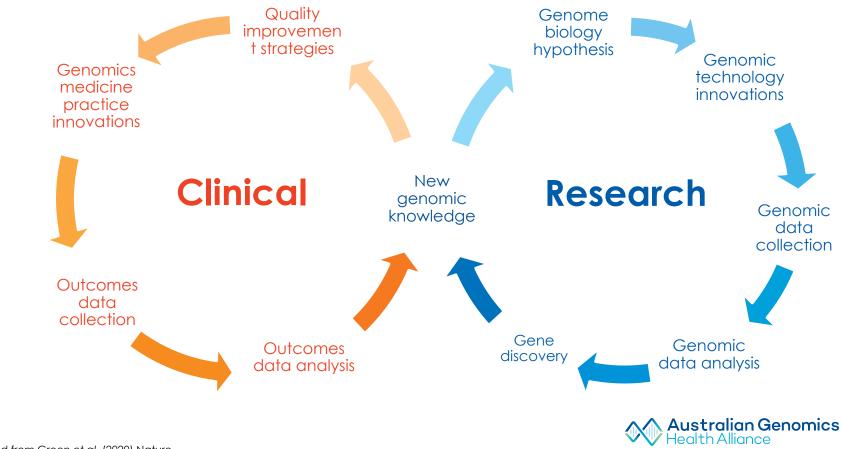
Telegenomics

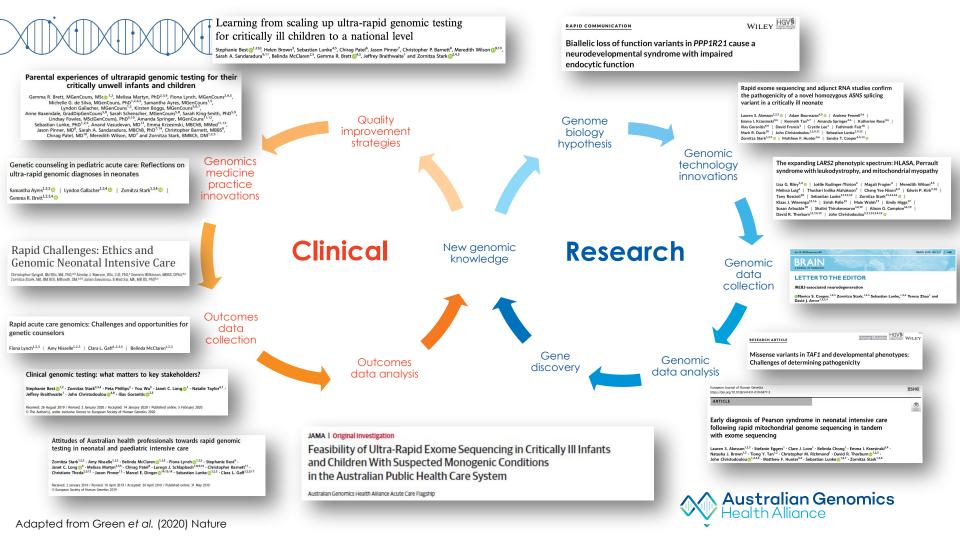


Data completeness

Data sharing and secondary use

Parents' names


Reason for test


About the test

recurrence

Improving health outcomes

Clinical Lead: Zornitza Stark Project Officer: Sophie Bouffler

<u>VIC:</u> Zornitza Stark, Matthew Hunter, Anand Vasudevan, Michelle de Silva, Gemma Brett, Sam Ayres, Lyndon Gallacher, Amanda Springer

NSW: Sarah Sandaradura, Jason Pinner, Meredith Wilson, Himanshu Goel, Kirsten Boggs

<u>QLD:</u> Chirag Patel

SA: Christopher Barnett, Anne Baxendale

<u>NT:</u> Tiong Tan

WA: Ben Kamien

TAS: Mathew Wallis

ACT: Mary-Louise Freckmann

<u>Sub-specialists:</u> Christiane Theda, John Christodoulou, Katherine Howell, Ben Gelbart

Laboratory Lead: Sebastian Lunke

VCGS Pathology: Sebastian Lunke, Simon Sadedin Belinda Chong

NSW Laboratory Lead: Bruce Bennetts

SA Laboratory Lead: Karin Kassahn

<u>QLD Laboratory Lead:</u> Ben Lundie

Evaluation:

Implementation Science: Stephanie Best, Janet C Long, Jeffrey Braithwaite

<u>Education:</u> Clara Gaff, Belinda McClaren, Amy Nisselle, Melissa Martyn, Fran Maher, Giulia McCorkell

<u>Additional Findings:</u> Clara Gaff, Elly Lynch, Melissa Martyn, Martin Delatycki, Lil Downie, Ling Lee

Health Economics: Ilias Goranitis

<u>Ethics:</u> Julian Savulescu, Chris Gyngell, Danya Vears, Lynn Gillam

Australian Genomics:

Tiffany Boughtwood

Matilda Haas, Dorothy Illing, Merryn Pearce

<u>State/Territoy Project Officers:</u> Alessandra Bray, Michael Quinn, Matilda Jackson, Denise Howting, Tessa Mattiske, Keri Finlay

<u>Data Management:</u> David Hansen, Alejandro Metke, Stefanie Elbracht-Leong, Sarah Casauria, Vana Madelli, Oliver Hofmann

GHIF 10th March 2021

Genomics England - Diagnostics

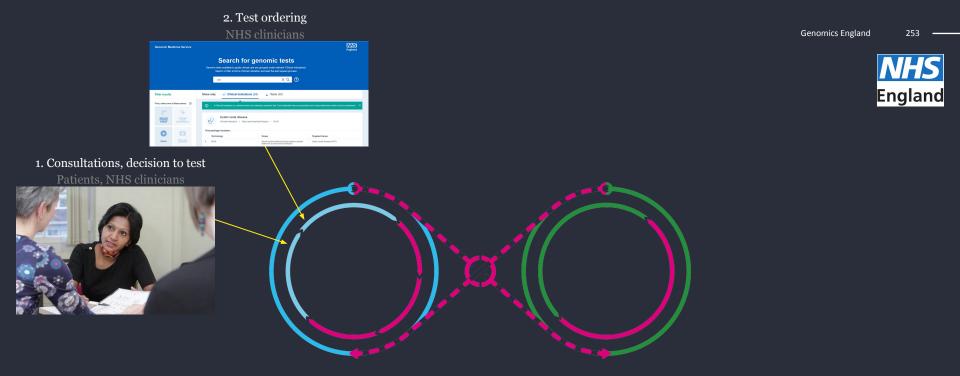
-

lidom

Richard Scott – Clinical Director, Genomics England

...now we are changing our approach and focus:

Project — Platform


Our mission is to refine, scale and continually evolve our ability to enable others to deliver healthcare and conduct genomic research

The Infinity Loop

Making "the Loop" work as an efficient, robust and scalable system will help...

- ...patients, as we enable dialogues on consent, diagnosis, prognosis and treatment
- …healthcare teams, as we provide reliable genomic insights that are easy to request and interpret
- <u>"researchers</u>, as we accelerate research by providing data, infrastructure, insights and environment to collaborate and accelerate fundamental and translational research

- Whole genome sequencing commissioned according to NHS England Genomic Test Directory
 - 20 rare disease indications, with focus on developmental and complex disorders
 - Paediatric cancers, Sarcoma and Acute Leukaemia

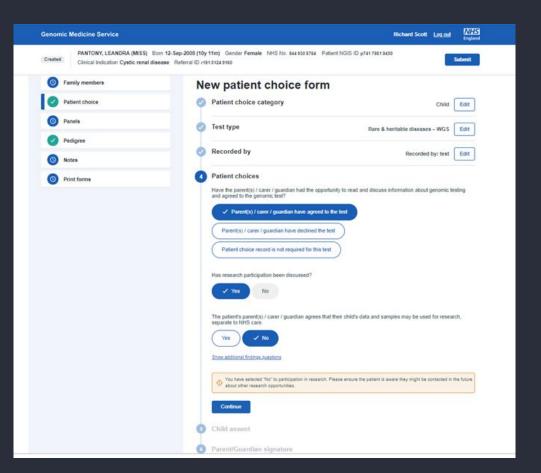
Genomics England

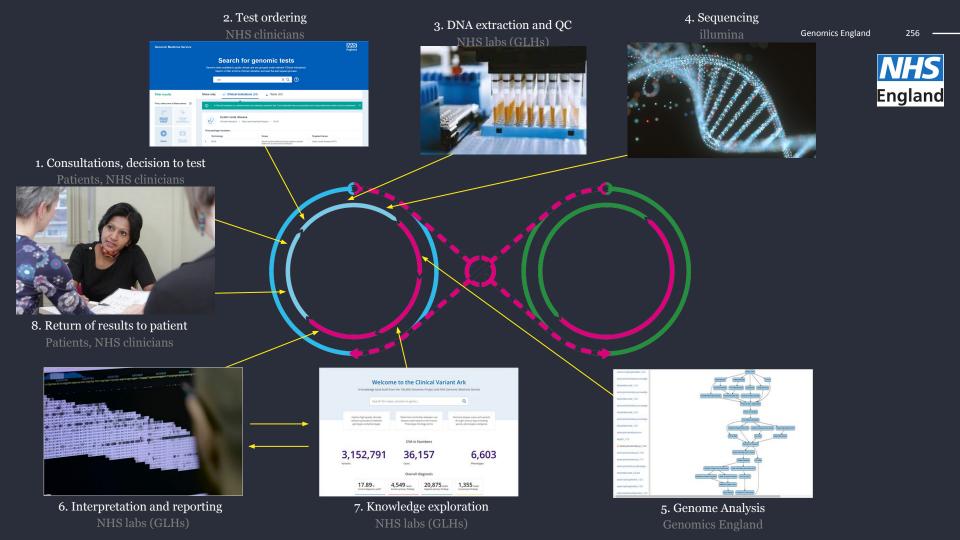
Standardised clinical data collection

Genon	ic Medicine Service			Richard Scott	Log out	England
Created	PANTONY, LEANDRA (MISS) Born 12-Sep-200 Clinical Indication Cystic renal disease Referra		NHS No. 944 930 8764 Patient NGIS ID	p741 7981 9450		Submit
Add info	rmation in any order	Answer cl	inical questions			
0	Patient details	Disease status de	-			
0	Requesting organisation	Affected				× ~
0	Test package	⑦ Choose the status of the control of the contro	ndition being tested for.			
Ø	Responsible clinician	Age of onset	onths			
0	Clinical questions *	③ For prenatal patients, enter months before birth, e.g3	number of			
0	Family members					
0	Patient choice *	Find an HPO phenotype of				
0	Panels	Start typing	Q			
0	Pedigree	③ For example, ventricular fibr Term presence is marked Prese	illation or HP:0001663. ent by default. Change to Absent or Unknown if app	ropriate.		
0	Notes	Name	Term presence	Modifiers		Remove
0	Print forms	Multiple renal cysts	Present O Absent O Unknown	Select	~	Ō

25 4

NHS

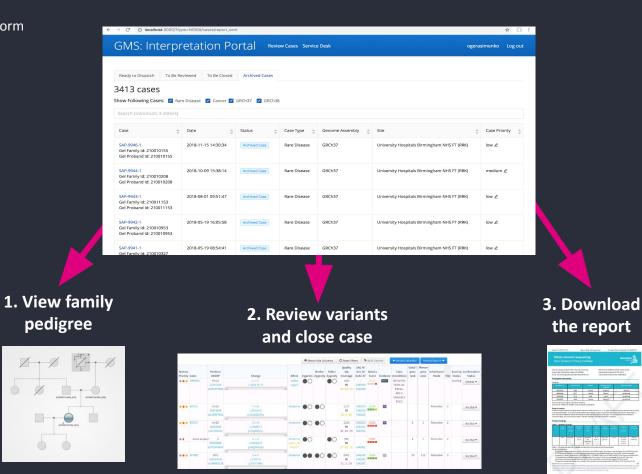

England


25

5

England

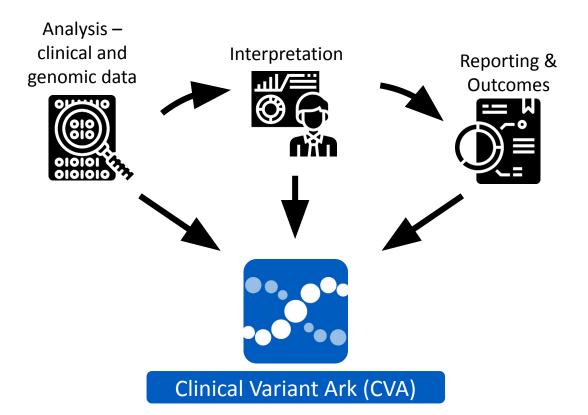
Patient choice – covering diagnostics AND research



25

England

7


Interpretation platform

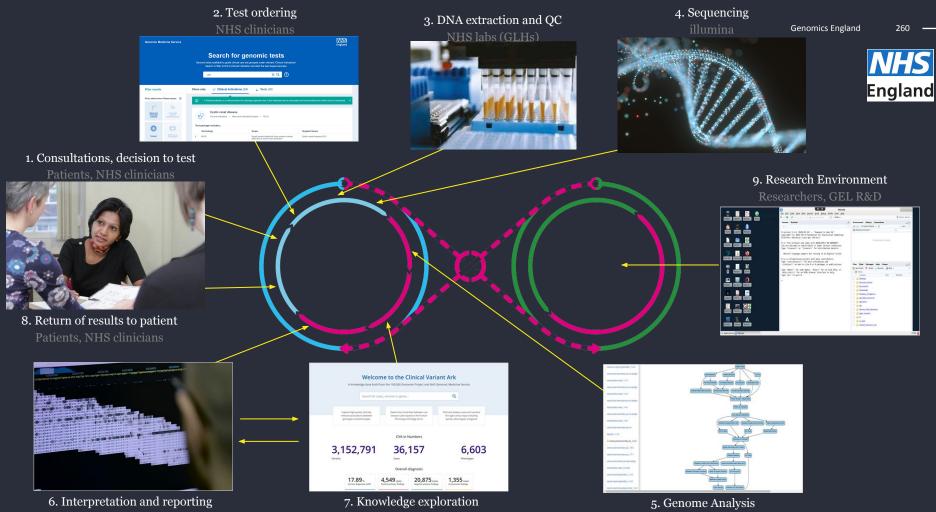
Genomics England

Accruing genomic data to produce actionable knowledge

Genomic data and knowledge infrastructure

Clinical Variant Ark

Crowd-sourced knowledgebase of gene-disease relationships and the evidence behind it.


Knowledgebase of clinically relevant variant-phenotype relationships captured throughout the interpretation process

OpenCGA

Population scale database of all variant phenotypes and all phenotypes

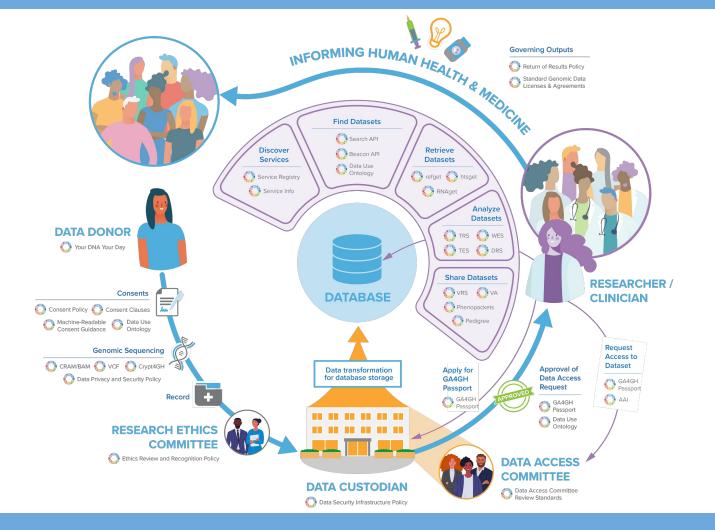
All open source

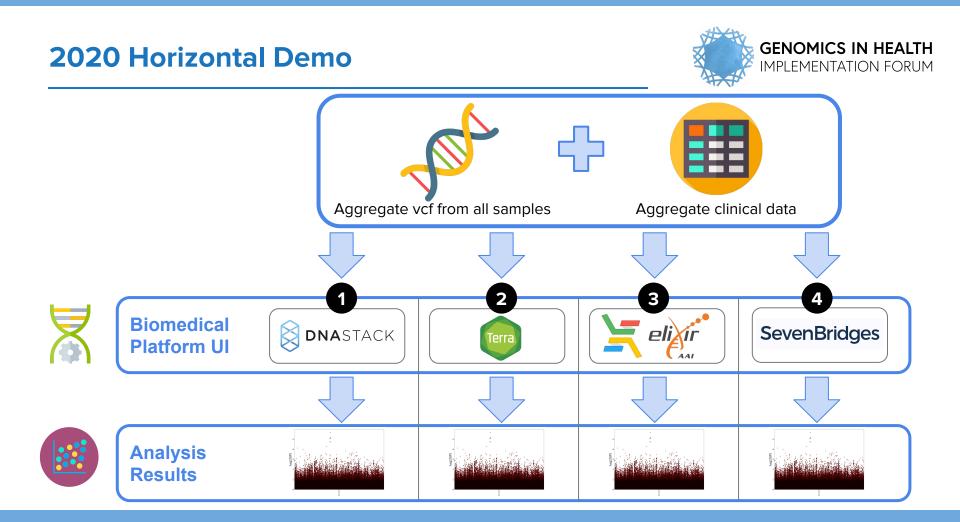
NHS labs (GLHs)

The Infinity Loop

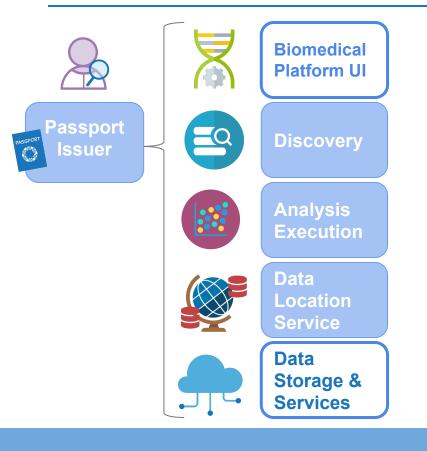
Making "the Loop" work as an efficient, robust and scalable system will help...

- ...patients, as we enable dialogues on consent, diagnosis, prognosis and treatment
- …healthcare teams, as we provide reliable genomic insights that are easy to request and interpret
- <u>"researchers</u>, as we accelerate research by providing data, infrastructure, insights and environment to collaborate and accelerate fundamental and translational research

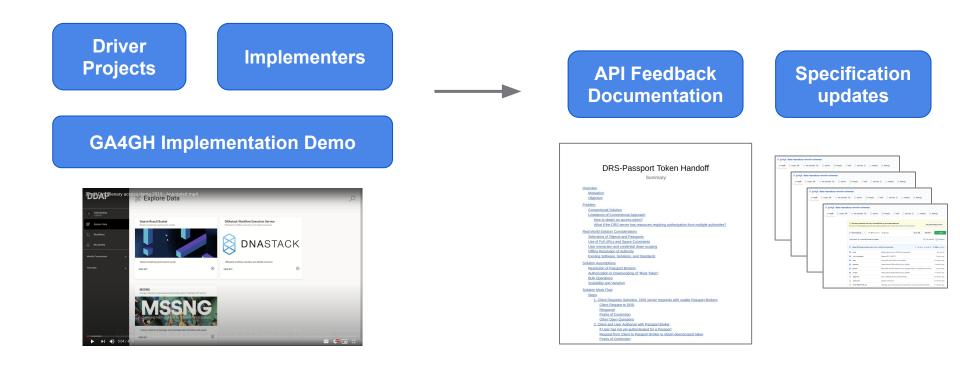

26

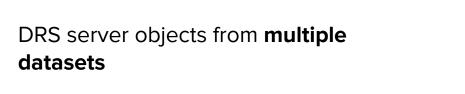

Thank you and do get in touch:

hello@genomicsengland.co.uk @GenomicsEngland @rich_genomics

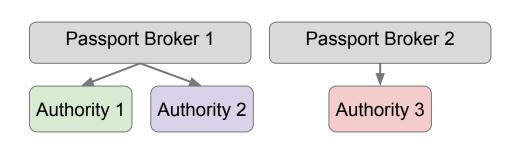

GA4GH Connections Demo Jeremy Adams

2020 Vertical Demo

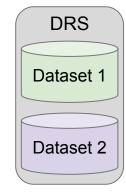

Combines **many standards** to cover a **whole use case**


GA4GH Passports for federated authorization

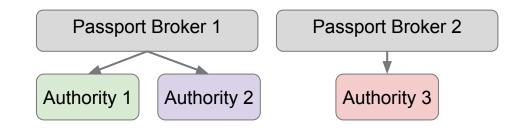
Single vendor


Datasets have **different authorities** granting access

Need a passport with **particular visas signed by particular authorities**


Possibly also from particular broker





DRS & Passports Token Handoff

We need to expand the API so a client knows where to go for passports

Connection Demo Implementers

Cancer Genomics Cloud

BioData CATALYST Powered by Gen3

Connection Demos overview: <u>bit.ly/GA4GHdemos</u>

FASP update at Connect 2021: bit.ly/FASP-Connect21

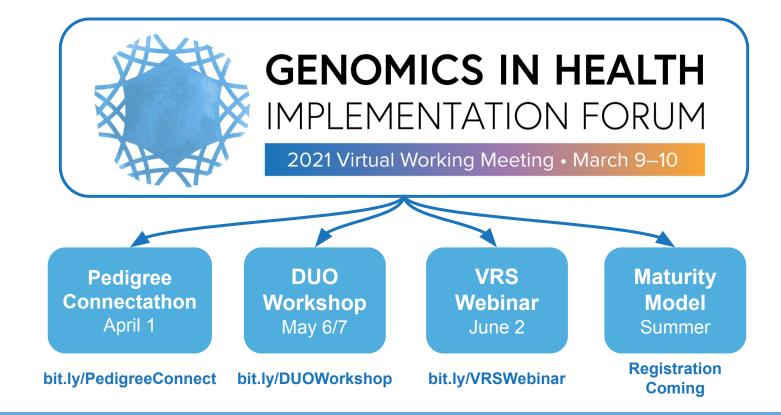
FASP Breakout session at 8th Plenary: FASP-8thPlenary

Questions? Email <u>secretariat@ga4gh.org</u>

Closing Remarks

Becoming a GHIF Member

- Short form to ensure that groups meet the criteria for membership
 - Are you a GA4GH organizational member?
 - What is your initiative doing to advance a genomics strategy and implement genomics in healthcare across a single country or a consortium of countries?
 - Which GA4GH technical standards or policy frameworks has your organization adopted in order to contribute to global genomic data sharing? If you have not yet done so already, which GA4GH deliverables are you planning to adopt and when?
- Linked on the GA4GH Website Implementation Tab


Genomics in Health Implementation Forum

Please use this form to commit your organization to the Genomics in Health Implementation Forum. Forum members must also be GA4GH Organizational Members that are (1) focused on advancing a genomics strategy across a single country or a consortium of countries, (2) working towards enabling translation of genomics into clinical care, and (3) actively working to adopt GA4GH standards to contribute to global data sharing.

Name of Initiative *	
Your answer	
Primary Contact *	
Your answer	
Primary Contact Email Addres	

GA4GH-GHIF Webinar Series

