

Welcome to the Genomics in Health Implementation Forum (GHIF) Virtual Meeting!

Please note that you will not have access to video or mic when you join.

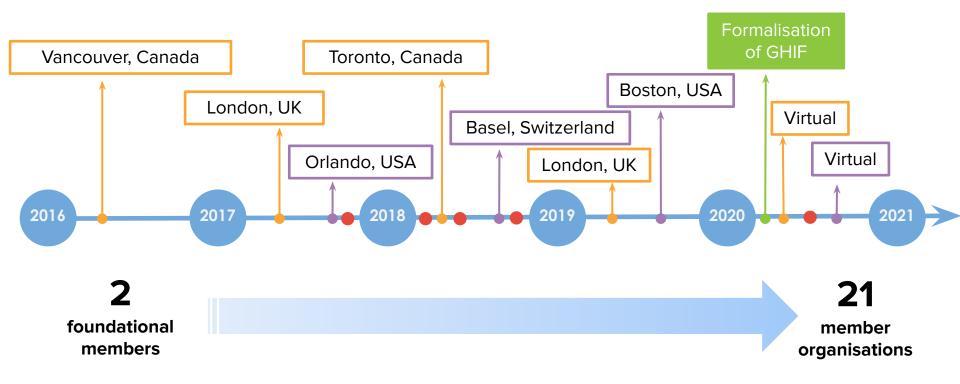
GENOMICS IN HEALTH IMPLEMENTATION FORUM

Opening Remarks: Day 1

Kathryn North and Mark Caulfield

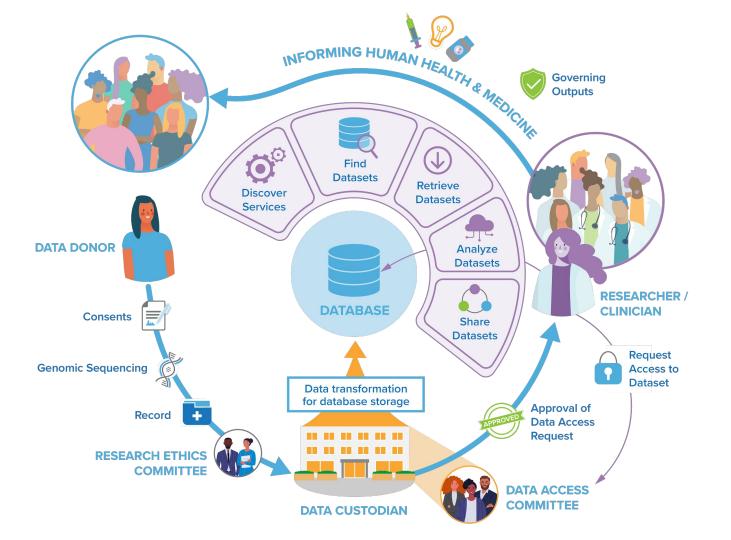
Genomics in Health Implementation Forum: GHIF

GHIF will support the **implementation** and **development** of **GA4GH standards**


In addition, the GHIF will seek to:

- Enable **collective learning** by sharing best practices, challenges, and opportunities with a technical, regulatory, clinical, and educational focus
- Identify areas of collaboration and resource/expertise sharing
- Advance pilot projects for **global data sharing** using large scale cohorts.

From National Initiatives to GHIF



From National Initiatives to GHIF - The "Why"

- Ensure that standards **fit needs** across multiple initiatives and healthcare systems
- Increase global membership and involvement in GA4GH, encouraging diverse input
- A **scalable** mechanism for incorporating many voices into GA4GH
- A mechanism for bringing standards needs to GA4GH Work Streams for further development

The GA4GH Ecosystem

The Global Alliance for Genomics and Health aims to accelerate progress in genomic science and human health by developing standards and policies for responsible genomic and health-related data sharing.

Becoming a GHIF Member

- Short form to ensure that groups meet the criteria for membership
 - Are you a GA4GH organizational member?
 - What is your initiative doing to advance a genomics strategy and implement genomics in healthcare across a single country or a consortium of countries?
 - Which GA4GH technical standards or policy frameworks has your organization adopted in order to contribute to global genomic data sharing? If you have not yet done so already, which GA4GH deliverables are you planning to adopt and when?
- Linked on the GA4GH Website Community Tab

Genomics in Health Implementation Forum

Please use this form to commit your organization to the Genomics in Health Implementation Forum. Forum members must also be GA4GH Organizational Members that are (1) focused on advancing a genomics strategy across a single country or a consortium of countries, (2) working towards enabling translation of genomics into clinical care, and (3) actively working to adopt GA4GH standards to contribute to global data sharing.

Name of Initiative *		
Your answer		
Primary Contact *		
Frinary Contact		
Your answer		

Benefits of GHIF membership

Global learning

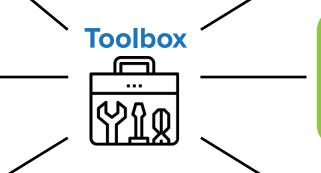
Contribution to GA4GH standards

Access to tools

Potential for collaboration and sharing

Pilot projects

CLINICAL TOOLS


- Minimum clinical datasets
- Rare Disease
- Common disease
- Data capture tools
- FHIR implementation

CONSENT & ED TOOLS

- Education material
- Consent resources
- Health economic data
- Policy resources
- Publications

TECHNICAL/DATA TOOLS

- Authentication tools
- Collection tools
- Curation network
- EMR linkage (future)
- Pedigree build (future)

GENOMIC KNOWLEDGE

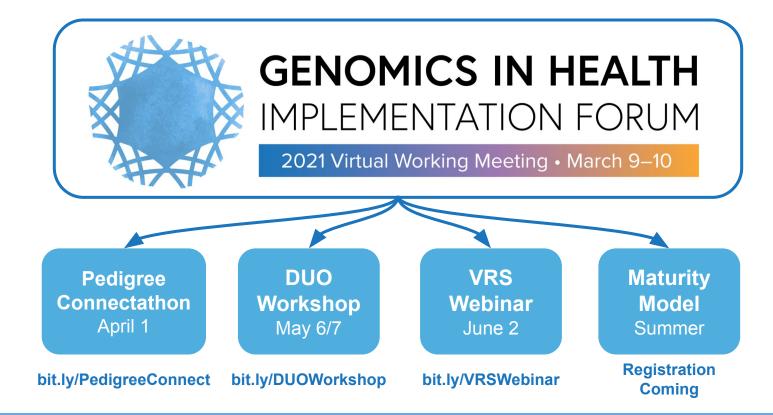
- Revision of ACMG
- Variant interpretation
- Gene disease validity
- Rare Disease discovery

MEDIA & ENGAGEMENT

- Media publications
- Patient and public education resources
- Engagement activity and standards (language etc)

GA4GH STANDARDS

- Link to toolkit
- Examples of implementation


Federated Discovery, Access, and Analysis of Global Datasets

Driving improvements in future spec iterations based on real-world lessons

Meeting Approach

Agenda – Day 1

Time (UTC)	Duration	Session Title	Speakers			
19:00 10 min		Opening Remarks	Kathryn North (AGHA), Mark Caulfield (GEL)			
19:10	25 min	 Innovative Approaches to Consent Introduction to Data Use Ontology (DUO) Walkthrough of Policy Submission 	Tiffany Boughtwood (AGHA), Jonathan Lawson (Broad Institute)			
19:35	20 min	 Application of GA4GH Standards GHGA & Medical Genomics in Germany Medical Genome Initiative (MGI) 	 Oliver Stegle (DKFZ/ EMBL) Shashi Kulkarni (Baylor) 			
19:55	15 min	 Education and Workforce Training in Genomics Restructure of NHGRI Training Programs African Genomic Medicine Training Initiative (H3A ++) 	 Teri Manolio (NHGRI) Nicola Mulder (H3Africa/H3ABioNet) 			
20:10	10 min	 Quality Control of WGS Results Overview of latest documentation 	Oliver Hofmann (AGHA), Mar Gonzalez Porta (Singapore NPM)			
20:20	40 min	 Variant Curation Shariant: National approaches to knowledge sharing between labs and globally Clinical Variant Ark : Case-level data in support of variant classification ClinGen Expert Panels: Development of disease-specific expert consensus to knowledge curation 	 Amanda Spurdle (AGHA/BRCA)) Augusto Rendon (GEL) Heidi Rehm (MGH/Broad Institute) 			

Agenda – Day 2

Time (UTC)	Duration	Session Title	Speakers
19:00	5 min	Opening Remarks	Kathryn North (AGHA), Mark Caulfield (GEL)
19:05	15 min	 Clinical and Phenotypic Data Capture & Exchange - Pedigree & Family Health History Introduction to the GA4GH Pedigree Standard and Upcoming Connectathon 	Grant Wood (Intermountain), Orion Buske (PhenoTips)
19:20	15 min	Clinical Interoperability of Variant Evidence	Alex Wagner (VICC/Nationwide), Larry Babb (Broad Institute)
19:35	25 min	 Getting Clinic Ready Accrediting Whole Genomes for Patient Care Application of CLIA/CAP Standards to Genomic Testing 	Ellen Thomas (GEL)David Bick (HudsonAlpha)
20:00	15 min	 Building a Framework for the Adoption of GA4GH Standards GA4GH::ELIXIR Maturity Model 	Melissa Konopko (ELIXIR)
20:15	35 min	 End-to-End Implementations of GA4GH Standards Acute Care GEL Diagnostics Highlights GA4GH Connections Demo 	 Zornitza Stark (AGHA) Richard Scott (GEL) Jeremy Adams (GA4GH)
20:50	10 min	Closing	Kathryn North (AGHA), Mark Caulfield (GEL)

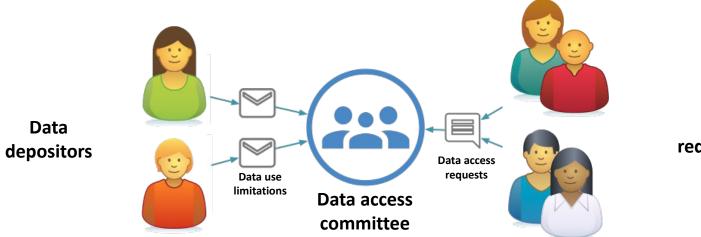
We encourage you to participate!

Please use **Q&A** to ask questions during plenary sessions

Use the **Raise Hand** button if you would like to make a verbal question or comment

Continue discussions using Chat

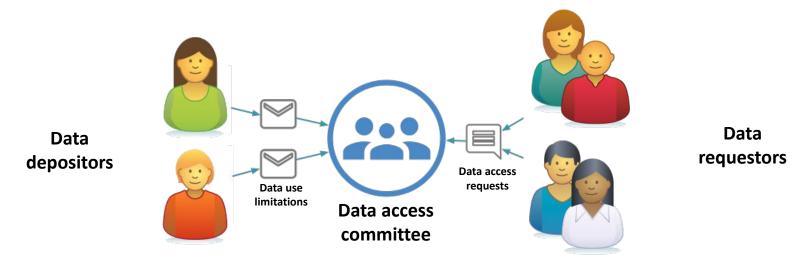
Please ensure your message is set to "<u>All</u> <u>panelists and attendees</u>"


Innovative Approaches to Consent Data Use Ontology (DUO) Jonathan Lawson, Broad Institute Tiffany Boughtwood, Australian Genomics

DUO Introduction

Current Data Sharing Model

Data requestors



DUO Introduction

The Challenge

Data

Ontology

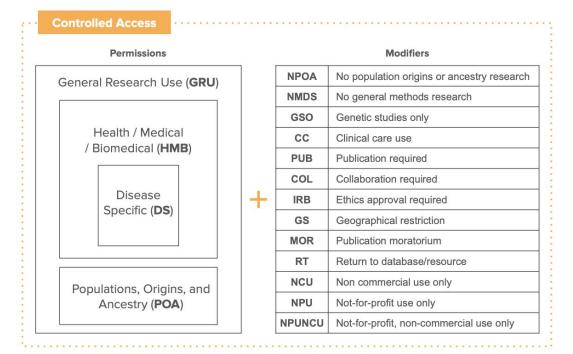
Use

Unique and diverse language in consent forms need to be interpreted by researchers and data access committees

The process to request access to human data is time-consuming. Length of the process hinders maximum data reuse.

DUO is use case driven

- Small, lightweight resource, evolves with projects and needs
- Clear textual definitions
 - augmented with examples of usage, comments, translations in progress (Japanese, French, Spanish, German)
- Provides automated, machine-readable coding
 - Stable terms and IDs
 - Unambiguous description of datasets restrictions for DACs
 - Leveraging ontological hierarchy



DUO terms overview

Permissions terms for expressly permitted uses or focused areas of research.

Modifiers terms add requirements, limitations, or prohibitions within the permitted boundary

Open Access

DUO is a GA4GH standard

- Unanimously approved Jan 2019 as a <u>GA4GH</u> product
- Community contributions
- Scope to promote data sharing
 - <u>Governance policy</u> guides evolution
- DUO IDs are stable, resource is versioned
- Latest release is *always* at <u>http://purl.obolibrary.org/obo/duo.owl</u>

Open GitHub repository, http://purl.obolibrary.org/obo/duo

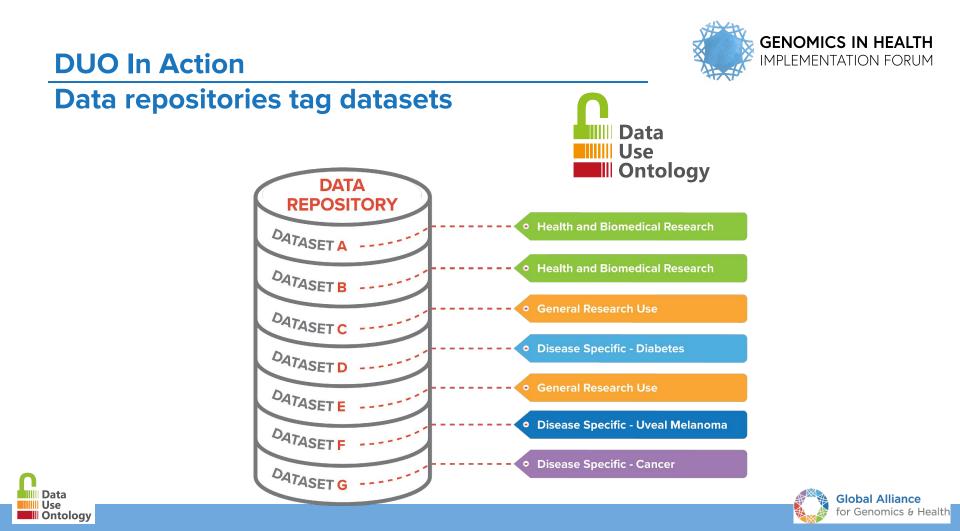
Includes consistency tests

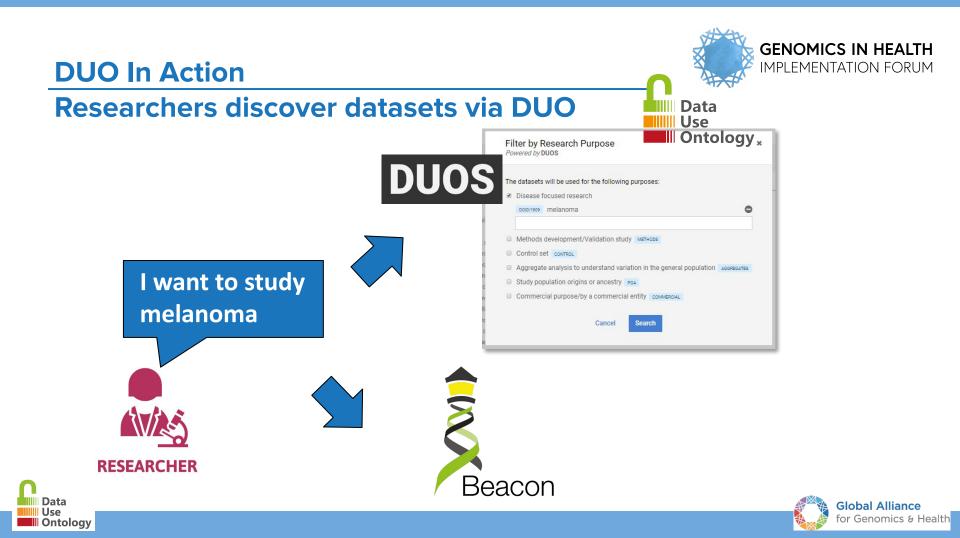
Unified issue tracker, <u>http://purl.obolibrary.org/obo/duo/tracker/</u>

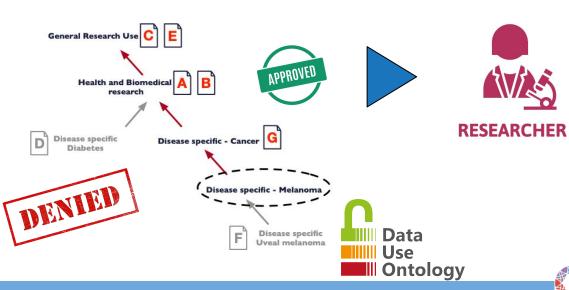
Uses GH tag for each release, <u>http://purl.obolibrary.org/obo/duo/releases/</u>

Versioning

- Use of a CNAME + PURL
- Previously released versions remain available (eg http://purl.obolibrary.org/obo/duo/releases/2017-01-31/duo.owl)
- Latest release is *always* at http://purl.obolibrary.org/obo/duo.owl







DUO In Action

Faster processing of data access requests

Questions: DUOS@broadinstitute.org

https://duos.broadinstitute.org/#/home

DUOS: Dataset Catalog

			Nore inform ranslated Use F					×	
Enter search term			Use is permitted for the specified disease(s): inflammatory bowel disease						
	Dataset ID	Dataset Name					Close	ase Studied	Principal Investiga
	DUOS-000110	Ulcerative_Colitis_in_Colon_Rege	ev_Xavier Broad	DAC	Link	Translated Use Restriction	RNA-seq	ulcerative colitis	Aviv Regev, Ramnik
	DUOS-000109	IDH-mutant astrocytoma - Suva	Broad	DAC	Link	Translated Use Restriction	RNASeq	astrocytoma	Aviv Regev, Mario Su
	DUOS-000108	oligodendroglioma scRNA-seq -	Suva Broad	DAC I	Link	Translated Use Restriction	RNASeq	oligodendroglioma	Aviv Regev, Mario S
	DUOS-000107	Oncogenic programs in H3K27M	I gliomas Broad	DAC	Link	Translated Use Restriction	RNASeq	Childhood Brain Stem Glioma	Mariella Filbin, Aviv
	DUOS-000106	MetastaticMelanoma_Regev	Broad	DAC	Link	Translated Use Restriction	RNA-seq	Metatstatic Melanoma	Aviv Regev, Ben Izar
	DUOS-000105	Primate Retinal Cell Atlas	Broad	DAC I	Link	Translated Use Restriction	RNA-Seq	NA	Aviv Regev, Joshua
	DUOS-000104	CMG_VCGS	Broad	DAC	Link	Translated Use Restriction	DNA, whole exome	orphan disease	Sue White
	DUOS-000002	Melanoma_Regev	Broad	DAC I	Link	Translated Use Restriction	scRNA, WES	melanoma	Aviv Regev
	DUOS-000008	RGP_MacArthur	Broad	DAC	Link	Translated Use Restriction	Whole Genome	rare disease	Daniel MacArthur, H
	DUOS-000007	CMG_Hildebrandt	Broad	DAC	Link	Translated Use Restriction	DNA, whole exome	kidney disease	Friedhelm Hildebran
	4								
Showin	g 1 to 10 of 27 en	tries			evious 1	2 3 Next >			10 💙 items j

D

DUOS: Data Access Request Form

2.7 Data Use Acknowledgements*

Please confirm listed acknowledgements and/or document requirements below

I acknowledge that I have selected a dataset limited to use on genetic studies only (GSO). I attest that I will respect this data use condition.

I acknowledge that I have selected a dataset which requires results of studies using the data to be made available to the larger scientific community (PUB). I attest that I will respect this data use condition.

I acknowledge that the dataset can only be used in research consistent with the Data Use Limitations (DULs) and cannot be combined with other datasets of other phenotypes. Research uses inconsistent with the DUL are considered a violation of the Data Use Certification agreement and any additional terms described in the Addendum.

One or more of the datasets you selected requires local IRB approval for use. Please upload your local IRB approval(s) here as a single document. When IRB approval is required and Expedited or Full Review is required and must be completed annually. Determinations of Not Human Subjects Research (NHSR) by IRBs will not be accepted as IRB approval.

Upload File

One or more of the datasets you selected requires collaboration (COL) with the primary study investigator(s) for use. Please upload documentation of your collaboration here.

Upload File

DUOS: DAC Review

APPLICATION SUMMARY

Structured Research Purpose

Primary:

DS The dataset will be used for disease related studies (neurodegenerative disease; cardiovascular system disease; Alzheimer's disease; Parkinson's disease; cancer; melanoma; frontotemporal dementia)

▲ DAR machine-readable format

Data Use Structured Limitations

Use is permitted for the specified disease(s): alcohol dependence

L DUL machine-readable format

Should data access be granted to this applicant?

YOUR VOTE*

O YES O NO

RATIONALE

OPTIONAL: Describe your rationale or add comments here

OUESTION 1:

Lata Use Letter

Participant-directed DUO: Machine Readable Consent Guidance

- Guidance on how to create a consent form that maps directly and unambiguously to the GA4GH DUO, which renders the consent machine-readable.
- Three elements:
 - A short consent clause providing a summary description of the data use term(s);
 - A detailed explanation of the meaning of the data use term(s), to ensure they are understood by the consented individual; and
 - An optional consent form appendix that unambiguously maps the consent language to specific data use term(s) in the GA4GH DUO.

)ntoloav

Participant-directed DUO: Machine Readable Consent Guidance

Included DUO codes / consent form elements:

- General Research Use (DUO:0000042)
- Health/Medical/Biomedical Research Use (DUO:000006)
- Disease Specific Research Use (DUO:000007)
- Population Origins or Ancestry Research Use (DUO:0000011)
- No Restriction on Use (i.e., Open Data) (DUO:0000004)
- Research Ethics Approval Required (DUO:000021)
- Not-for-Profit Use Only (DUO:000018)

Key considerations, risks and implications of the DUO codes are highlighted in the document document to guide those drafting consent forms

9:31 am

DUO Implementations

Participant-directed DUO: CTRL 'Control'

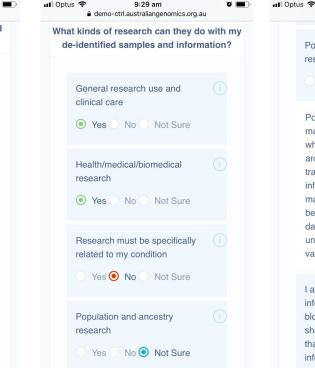
9:28 am

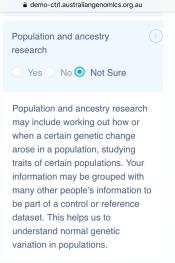
demo-ctrl.australiangenomics.org.au

III Optus 😤

Optus 😤 12:36 pm demo-ctrl.australiangenomics.org.au

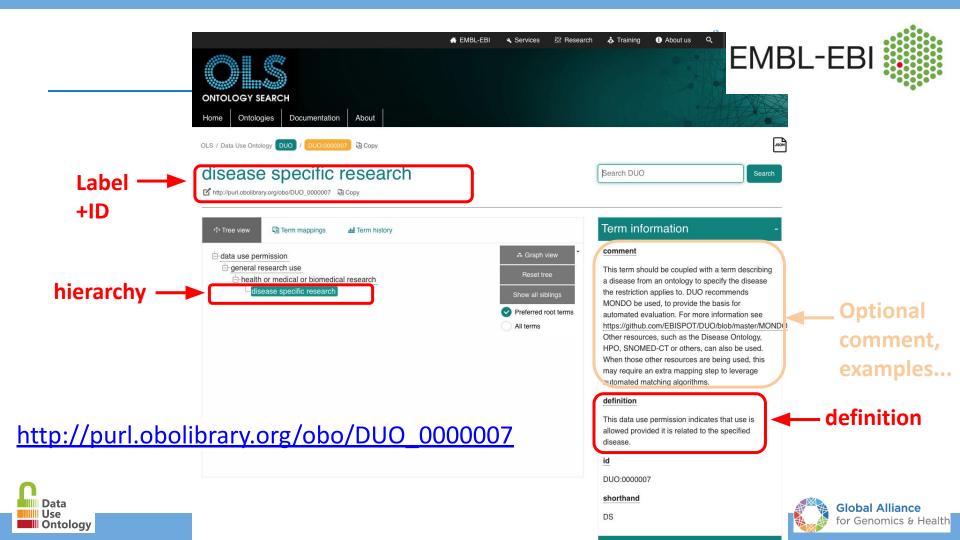
> Australian Genomics lealth Alliance


Welcome to CTRL


Ontology

Consent for participating in the Australian Genomics program

Log in Data Use

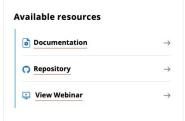

Who can have access to my de-identified samples and information? Not-for-profit research organisations (eg Murdoch clinical care Children's Research Institute) Yes No No Not Sure Yes Universities and research institutes research (eg The University of Queensland) No Yes Yes O No Not Sure Government (eq Australian Government Department of Health) Yes 💽 No No 💿 Not Sure Yes Commercial companies (eq research pharmaceutical companies) Yes Yes No Not Sure Questions: Dr. Matilda Haas m.haas@australiangenomics.org.au

I agree to my general health information (eg just my MRIs, blood test or other results) being shared with other research studies that don't need my genomic information.

https://www.ga4gh.org/genomic-data-toolkit/

Machine Readable Consent Guidance

A GA4GH-approved Standard The GA4GH Machine Readable Consent Guidance provides instructions for researchers integrate standard data sharing language into consent forms in a way that is able to be translated to a computable language. Machine readable consent language is able to be attached to datasets and stored in their descriptive data using DUO terms. Researchers can then search for datasets that have been consented to for their research purposes. Available resources


Download PDF

 \rightarrow

Data Use Ontology v1

A GA4GH-approved Standard The GA4GH Data Use Ontology (DUO) allows users to semantically tag genomic datasets with usage restrictions, allowing them to become automatically discoverable based on a health, clinical, or biomedical researcher's authorization level or intended use. DUO is based on the OBO Foundry principles and developed using the W3C Web Ontology Language. It is being used in production by the European Genome-phenome Archive (EGA) at EMBL-EBI/CRG as well as the Broad Institute for the Data Use Oversight System (DUOS).

CONTRIBUTORS

DUO Implementation – BY YOUR INITIATIVE

- How do I get started?
- How do I map my consent to DUO?
- What are the technical implications?
- Who can I ask for assistance?

Data

Ontology

Use

- Workshop purposes:
 - facilitate uptake of DUO by assisting new adopters;
 - expand our international DUO community
- May 6 or 7 (depending on best timing for most attendees)
- Submit questions / data sharing language / data use restrictions from the consent forms or data sharing plans AT REGISTRATION.

DUO Workshop

Optional Consent for Future Research

I also provide consent to:

Share my sample and information collected through this study, with all personal information
removed and replaced with a study code, with other ethically approved research that may or
may not be related to this research project.

□ Yes □ No) If you want to decide what kinds of future research your information is

shared for, and the organisations it is shared with, please select 'yes' and then register to CTRL to make your choices.

Being contacted about other related research projects in the future that I may be eligible for. If interested in taking part, I will be asked to sign a separate consent form.
 Yes
 No

Workshop registration form

Please submit your consent clauses as a list in the box below, using square brackets to separate multiple clauses (eg. [clause],[clause],[clause]...)

If you are unsure of how to extract clauses/policies, please review the slide deck here: <u>http://bit.ly/DUOSubmission</u>. If you require additional assistance, please reach out to <u>lindsay.smith@ga4gh.org</u>.

Your answer

Additional Comments

Your answer

Optional Consent for Future Research

I also provide consent to:

 Share my sample and information collected through this study, with all personal information removed and replaced with a study code, with other ethically approved research that may or may not be related to this research project.

□ Yes □ No) If you want to decide what kinds of future research your information is

shared for, and the organisations it is shared with, please select 'yes' and then register to CTRL to make your choices.

Being contacted about other related research projects in the future that I may be eligible for. If
interested in taking part, I will be asked to sign a separate consent form.

🗆 Yes 🗆 No

Workshop registration form

Please submit your consent clauses as a list in the box below, using square brackets to separate multiple clauses (eg. [clause],[clause],[clause]...) If you are unsure of how to extract clauses/policies, please review the slide deck here: <u>http://bit.ly/DUOSubmission</u>. If you require additional assistance, please reach out to <u>lindsay.smith@ga4gh.org</u>.

Your answer

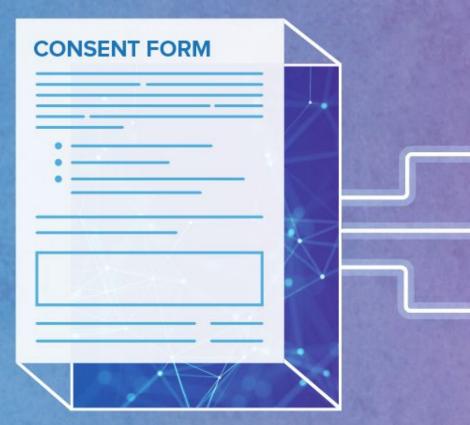
Additional Comments

Your answer

- Workshop activities:
 - Address questions
 - Work through examples of mapping data use clauses to DUO
- Note the registration closing date, as we will proceed with / time the workshop based on interest and registrations

Thanks & Contacts

- Jonathan Lawson <u>jlawson@broadinstitute.org</u>
- Tiffany Boughtwood <u>t.boughtwood@australiangenomics.org.au</u>
- Melanie Courtot <u>mcourtot@ebi.ac.uk</u> *thanks for the slides!
- Giselle Kerry <u>kerryg@ebi.ac.uk</u>
- Jaime Guidry Auvil jaime.guidryauvil@nih.gov
- Lindsay Smith <u>Lindsay.smith@ga4gh.org</u>
- And all the DUO contributors: <u>https://github.com/EBISPOT/DUO#contribution</u>



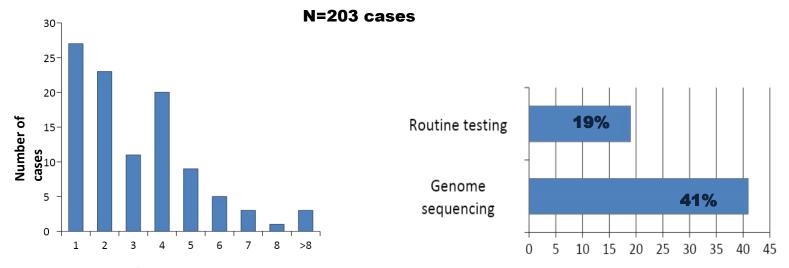
DUO WORKSHOP

May 6 or 7 (depending on best timing for attendees)

- Facilitate uptake of DUO by assisting new adopters
- Expand international DUO community
- Submit questions, data sharing language, data use restrictions, or data sharing plans at registration!

Register: bit.ly/DUOWorkshop

Application of GA4GH Standards


The Medical Genome Initiative

Moving whole-genome sequencing for rare disease diagnosis to the clinic

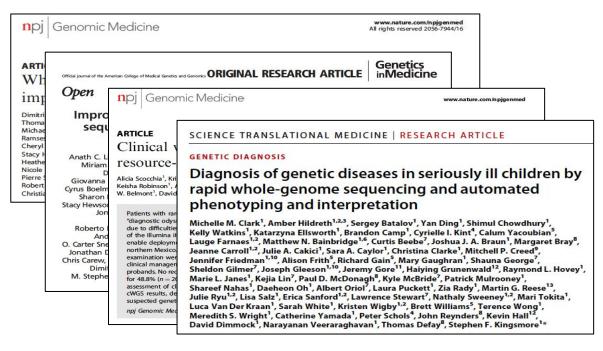
Shashikant Kulkarni, M.S. (Medicine), PhD, FACMG

Chair, Medical Genome Initiative Professor & Vice Chairman for Research Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX

Improved diagnostic rates in a single test

Number of genetic tests

% of cases with


INITIATIVE

- ordered Diagnosis
 Comparison of WGS with standard of care genetic testing for clinics throughout SickKids: Diagnostic yield of WGS is 41% (73/203) compared with 19% (38/203) using standard testing
- Average of <u>3 genetic tests per patient; microarray analysis the most utilized</u>
- Increased yield due to off-target genes but also non-coding (intronic, miRNA) and small copy number changes not detected with other standard methods

Lionel A. et al Genet Med (2017), Stavropoulos et al. NPJ Gen Med (2016)

Diagnostic Utility of WGS as a first-line genetic

test

- WGS may be a useful first line genetic test but **Clinical Validation of WGS** is challenging and there are no clear standards in place
- Professional bodies have made progress but specific challenges not addressed

Medical Genome Initiative

Launched February 2019

- Mission: Expand access to high-quality clinical whole-genome sequencing for the diagnosis of rare genetic germline disease, through the establishment of common laboratory and clinical best practices
- **Goals:** Develop and publish laboratory & clinical best practices for implementing clinical WGS for the benefit of others looking to set up the test
- **Membership:** Consortium made up of institutions which have deployed clinical genome sequencing technology for the diagnosis of those with rare germline disorders

Medical Genome Initiative Consortium Members

Roadmap & Working groups

Designing, Validating and Performing Genomic Testing Requires Many Linked Steps

Marshall et al. Genome Medicine (2020) 12:48 https://doi.org/10.1186/s13073-020-00748-z

Genome Medicine

Open Access

Check for updates

The Medical Genome Initiative: moving whole-genome sequencing for rare disease diagnosis to the clinic

Christian R. Marshall¹, David Bick², John W. Belmont³, Stadie L. Tavlor^{3*}, Euan Ashlev⁴, David Dimmock⁵, Vaidehi Jobanputra⁶, Hutton M. Kearney⁷, Shashikant Kulkarni⁸, Heidi Rehm⁹ and on behalf of the Medical Genome Initiative

Abstract

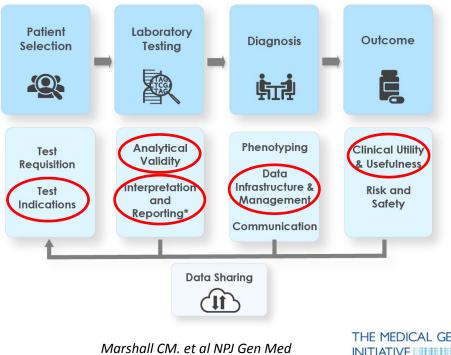
Clinical whole-genome sequencing (WGS) offers clear diagnostic benefits for patients with rare disease. However, there are barriers to its widespread adoption, including a lack of standards for clinical practice. The Medical Genome Initiative consortium was formed to provide practical guidance and support the development of standards for the use of clinical WGS

Keywords: Clinical whole-genome sequencing, Diagnostics, Standards, Rare genetic disease

Background

Rare diseases affect more than 350 million people globally and collectively represent a particularly significant source of morbidity and mortality [1]. Many have an underlying weighs on patients and their families [3, 4, 6]. genetic component as demonstrated by a recent review of > 3800 rare diseases listed by Orphanet, which showed that undergoing WGS to date have been tested through reapproximately 80% are either exclusively genetic or have search protocols. There are currently several obstacles in genetic subtypes [2]. Patients with rare diseases commonly transitioning WGS testing from the research setting into experience multiyear diagnostic evaluations and receive dinical practice. For laboratories, in addition to the multiple misdiagnoses during that time [1]. Thus, establishing a precise molecular diagnosis can reduce costs by steps of establishing a technically challenging test and ending this diagnostic odyssey and, in many cases, aiding becoming proficient in its interpretation and reporting in medical management [3, 4].

The advent of next-generation sequencing technology has WGS (i.e., the test itself, patient selection, dinical utility, been transformative in the molecular diagnosis of nare disease by allowing comprehensive analysis of patient genomes. patients and families represent barriers to widespread Clinical whole genome sequencing (WGS) can detect a adoption. Importantly, an additional significant barrier broad range of pathogenic allele types and is emerging as an to widespread adoption is a general lack of guidance and effective first-tier test for cases in which physicians are faced standards for clinical implementation. with a high degree of diagnostic uncertainty [5]. Thus,


clinical WGS in rare disease has the potential to deliver precise molecular diagnoses, enable changes in medical management, and eliminate the burden of the unknown that

Despite all this potential, the majority of individuals can be overwhelming. For clinicians, education around

The importance of standards The definition and adoption of common international

Illumina Inc., San Diego, CA, USA Full list of author information is available at the end of the article. standards are essential for the transformation of WGS

> © The Author(s) 2020 Open Access This at ide is licensed under a Creative Commons Attribution 4.0 International License • The value of a set of the se Iteratio, unless indicated otherwise in a costituities the material if material is not included in the anticlet Clearater Commons licence and your intended use is not permitted by statustry regulation or exceeds the permitted use you will need to obtain permission directly from the cognitipation biol. The way a copy of this korne, with the functionate commons anglements of the control of the c The Granke Commons Public Domain Dedication waker ("the/contribuctormonicorg/publicidomain/temp/.0) applies to the data made we lable in this article, unliss otherwise stand in a credit line to the data.

(2020)

THE MEDICAL GENOME INITIATIVE

Analytical Validation Working Group

www.nature.com/npigenmeg

(R) Check for updates

Christian Marshall The Hospital for Sick Children

npj Genomic Medicine

REVIEW ARTICLE OPEN

Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease

Christian R. Marshall (¹)², Shimul Chowdhury², Ryan J. Taff, Mathew S. Lebo (¹)², Jillian G. Buchan⁴⁺³, Steven M. Harirao (⁴)³, Ross Rowsey², Fittis W. Bee²⁷, Penelle Liu², Ribabel A. Worthey¹⁻²³, Valdel Johonsour **5**¹², David Dimonsck (²)⁷, Hatton M. Keamey², David Bicko²⁶, Shashilant Kulikam⁵⁻³, Stacle L. Taylor (²)², John W. Belmont², Dimitri J. Stavropoulos³, Nail J. Lennon⁴, and Medical Genome Initiative⁴

Whole-periode sequencing (WGS) has shown promise in becoming a first-tier dispositic test for patients with rate genetic disorders: however, strandards advantaging the dimition and deployment practice of a best-in-class test are backing. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality diricult WGS by utilitibility best practices. Here, we present concensus recommendations on clinical WGS analytical wildiation for the diagnosis of individuals with suspected gentiline clinicae with a focus on test development, giftoric considerations for test design test validation practices, and metrics to monitor test performance. This work also provides incident to test design test validation practices, and metrics to monitor test appropriate instration of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinicae WGS is an appropriate Instration to the generic disorders and at minimum is ready to replace chromosonial microarbity analysis and whole-exome sequencing. The recommendations presented here should reduce the budient on blooratories introducing WGS link divide links and el meditative WGS listing for disparsis of generic disease.

npj Genamic Medicine (2020)5:47; https://doi.org/10.1038/s41525-020-00154-9

INTRODUCTION

Advances in next-generation sequencing NGS) over the past decade have transformed genetic training by increasing diagnostic yield and decreasing the time to reach a diagnosis⁻¹. Targeted MSS multigene panels have come into videspread use and valobe exome sequencing (WES) is a powerful aid in the diagnosis of patients with nonspecific phenotycic fratures⁻¹ or and ortically ill recontes⁻¹, where the differential diagnosis often includes multile rare genetic dioxides⁻¹. These approaches, however, have both workflow and test content limitations that may constrain their overall effcasy.

Whole-genome sequencing (WGS) can address many of the technical limitations of other enrythment-based NGS approaches, including improved coverage^{11,1} and sensitivity for the detection of structural and complex variants¹¹. WGS also enables the disrupting regulatory regions, noncoding RNAs, and reRNA planing^{11,1}. Energing users of WGS include RLA genorybing^{11,1}, pharmscogenetic testing^{11,2}, and generation of polygenic risk, cover^{11,1}. Server studies have demonstrated the advantage of range of colont^{12,10,1} and have shown the dispnosite superiority of WGS compared with conventional testing in pediatric testing^{12,10,1}.

patients27-29 and critically ill infants30,31. As a more efficient test, WGS is poised to replace targeted NGS or WES and chromosomal microarray (CMA), as a first-line laboratory approach in the evaluation of children and adults with a suspected genetic disorder^{20,32,33}. WGS also has the benefit of periodic reanalysis across multiple variant types, which will increase diagnostic efficacy through updated annotation and analysis techniques³ Although the stage is set for widespread adoption of clinical WGS, technical challenges remain, and standards that address both the definition and the deployment practices of a best-in-class clinical WGS test have not been fully defined. Professional bodies have made progress in providing guidance for clinical WGS test validation35.8, and best practices for benchmarking with reference standards and recommended accuracy measures are beginning to emerge³⁷⁻¹⁹. It is important to note, however, that these recommendations do not address the specific challenges related to the setup of clinical WGS.

SCOPE AND METHODS

To address these challenges, a working group comprised of experts from the Medical Genome Initiative⁴⁰ was created to develop practical recommendations related to the analytical

• <u>Rationale</u>

- No standards or consensus as to what constitutes a clinical WGS test nor what performance metric thresholds must be met
- <u>Goal</u>
 - Define analytic metrics and thresholds for WGS that show no loss in performance compared to microarray and whole-exome sequencing
- <u>Status</u>
 - Published
 - Currently inactive
 - Plans to reinstate and expand group to tackle more topics in depth (e.g., repeat expansions)

Togenerate of Predited Laboratory Medicine, Genores Togenarises, The Height of the Ch (Heiner, Toronta, DNC, Leads, Teal); Children Heisten, Ber Genores, Heiden, San (Heisten, Schler, Schler, Heisten, Schler, Heisten, Heisten, Ber Genores, Heiden, Heisten, Berten, Heisten, Berten, Heisten, Berten, Heisten, K., Utak, Machan, Heisten, K., Heisten, K., Heisten, He

Clinical Utility Working Group

npj Genomic Medicine

www.nature.com/npjgenmed

(R) Check for updates

REVIEW ARTICLE OPEN

The Hospital for Sick Children

Clinical utility of genomic sequencing: a measurement toolkit

Robin Z. Hayeems¹⁰⁰, David Dimmock <mark>07</mark>, David Bick <mark>07</mark>, John W. Belmont^{*}, Robert C. Green^{*}, Brendan Lanpher^{*}, Valdeh Johanputra 07¹⁰, Roberto Mendoza **07**, Shashi Kulkami^{104,71}, Megan E. Grove <u>07²</u>, Stade L. Taylor **07**, Euan Ashley¹² and Medical Genome Initiative*

Wholegenome sequencing MKGI is positioned to become one of the most robust strategies for achieving timely diagnosis of rare genomic disease. Despite 1s favorable diagnosis performance compared to conventional testing strategies continue us and reimbursement of WKG are hampered by inconsistencies in the definition and measurement of clinical utility. For example, what constitute, clinical utility for WKG varies by stakeholders' perspective by/pixician patients, fimilies, invance companies, healthcare organizations, and society, clinical context (prenatal, pediatric, critical care, adult medicine), and test purpose (diagnosis, screening, transmer steection). An apply evolving technology landscage and challenges associated with robust comparative study design in the context of rare disease further impede progress in this area of empiric newsrch. To address this challenge, an expert working group of the Medical Caremone Initiative was: formed. Following a consensus-based process, we align with a broad definition of clinical utility and propose a conceptually-grounded and empirically-guided measurement toolkit focused on four domains of utility, diagnosis thinking efficacy, therespecific estavork for best practice and concellence and conceme efficacy. For each domain of utility, we offer specific indicators and measurement strategies. While we focus on diagnostic applications of WGS for rare genimile diseaset the toolkit to evolve over time, it provides a resource for laboratories, clinicians, and meserchers looking to characterite the walke of WGS beyond the laboratory.

npj Genamic Medicine (2020)5:56; https://doi.org/10.1038/s41525-020-00164-7

INTRODUCTION

Whole-genome sequencing (WGS) is poised to exert a profound influence on clinical care by ushering individualized genomic medicine into routine practice. While technical and interpretive complexities remain, WGS is emerging as one of the most robust strategies for achieving timely diagnoses in undiagnosed rare disease populations¹⁻⁸. However, for a diagnostic test such as WGS to be accepted into practice, commissioned in a health system, or receive coverage and reimbursement through health insurance, evidence of clinical utility and cost-effectiveness is generally required. Unlike prospective clinical research where the 'effectiveness' of an intervention can be easily tied to a predefined health outcome, the concept of clinical utility in genetic medicine is rarely uniformly defined nor necessarily directly tied to a specific health outcome. As such, generating and evaluating evidence of clinical utility is complex. The challenge in defining clinical utility today is compounded by the extraordinary heterogeneity of rare diseases, as well as the polygenic nature of more common conditions for which WGS is expected to be relevant. In this paper, we aim to extend earlier conceptualizations of clinical utility as applied to the diagnostic use of WGS and suggest that this framework not only be used as a tool for evidence review⁹⁻¹¹, but as a tool for measurement best practices. Our recommendations are intended for investigators, policy advisory bodies, payors, and health-care systems committed to providing value-based care and improving health and non-health related outcomes through the use of WGS at scale.

Early conceptualizations of clinical utility related to genetic testing energied from work at the Centers for Disease Control². The "ACCE" framework described analytical validity, clinical utility, and exital implications as core components to evaluate before recommending genetic testing on the balance of benefits and harms associated with the use of the test in ad the usefulness or added value in decision-mailing compared with not using the test.¹ In the ACCE framework, a series of uperston relatings to test characteristics, health impacts, exonomic impacts, education, and implementation considerations are used to guide literature axissment².

In the years that followed the development of the ACCE framework, scholars professional groups, and payors continued to refine the dimensions and definitions of clinical utility. The Evaluation of Genomic Applications in Practice and Prevention EGAPP) Working Group (EWG), for example, adapted a model proposed by Tastioni et al.", which itself was adapted from fryback and Thombury's therarchical model of efficacy for text were organiced into four oproce diagnostic and prognostic thinking, therapeutic choice, patient impact, and familial and objectal impact. To organize and score the evidence reviewed, the

np nature partner

• Rationale

 Generating and evaluating evidence of clinical WGS is complex (i.e., effectiveness of clinical WGS is not easily tied to a predefined health outcome)

THE MEDICAL GENOME

INITIATIVE

- <u>Goal</u>
 - Develop a measurement toolkit to offer resources and practical guidance using objective and validated measures
- <u>Status</u>
 - Published
 - Currently inactive

¹ Pogami no Cisili Haafin Favlaution, Linkow Linkow, Linkow,

Patient Selection/Indication Working Group

- <u>Rationale</u>
 - Selecting patients for whom clinical WGS would offer the most benefit can be challenging for healthcare providers
- <u>Goal</u>
 - Develop evidence based and consensus-driven best practice recommendations for which patient groups should receive clinical WGS as a first-tier test
- <u>Method</u>
 - Clinician survey of current use
 - Systematic evidence review
 - Expert opinion
- <u>Status</u>
 - ACTIVE
 - Ongoing working group discussions
 - Estimated publication date: August 2021

Kristen Wigby Rady Children's

Data Infrastructure & Management Working Group

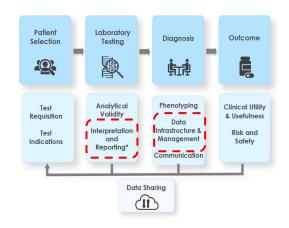
- <u>Rationale</u>
 - Guidance and recommendations for what infrastructure is needed to set up clinical WGS are lacking due to the rapid pace at which the field is developing
- <u>Goal</u>
 - Describe *current solutions* and develop best practice recommendations for storage and management of the large volume of sequence and health data generated by clinical WGS
 - High level overview,
- <u>Method</u>
 - Very high-level overview, target audience are laboratories in the initial stages of setting up clinical WGS
 - Divide into 4 domains
 - Informatics
 - Software development and deployment
 - Information management technology
 - Data security
- <u>Status</u>
 - ACTIVE
 - Estimated publication date: August 2021

Christian Marshall The Hospital for Sick Children THE MEDICAL GENOME INITIATIVE

Test Interpretation & Reporting Working Group

- <u>Rationale</u>
 - Guidance on how best to prioritize detection of variants relevant to the clinical phenotype while minimizing the return of highly uncertain or clinical irrelevant results are lacking
- <u>Goal</u>
 - Develop recommendations for selecting and validating appropriate tools to detect and analyze the full range of variant types that can be captured by clinical WGS
- <u>Method</u>
 - Requisition/Consent
 - Annotations
 - Analysis
 - Case and Variant Interpretation
 - Reporting
 - Reanalysis
- Status
 - ACTIVE
 - Estimated publication date: June 2021

Chrissy Austin-Tse Vaidehi Jobanputra Broad/Harvard New York Genome Center


Future Directions

- Complete and publish manuscripts from active working groups
- Reinstate inactive working groups where there is interest and bandwidth
- Revise roadmap to include future topics of interest and work products
 - E.g., Implementation, reimbursement
 - E.g., Webinars, community discussion forums
- Expand membership to capture global representation and perspectives
 - Individual contributor
 - Institutional membership
- Engage with other initiatives and consortia to identify synergistic areas leading to potential collaboration
 - GA4GH
 - GHIF

Opportunities for GA4GH Collaboration

GA4GH standards and tools will be adopted and inform the Medical Genome Initiative

Medical Genome Initiative Working Group	Relevant GA4GH Workstream(s)	Comments	
Data Infrastructure and Management	 Data security Genomic knowledge standards Large scale genomics Data use and researcher identities 	 File formats Data privacy and security policy Variant annotation/representatio n 	
Test Interpretation and Reporting	 Regulatory and Ethics Genomic Knowledge Standards 	 Consent Toolkit & Policy Return of results – Survey of stakeholder perspectives Variant annotation/representatio n 	

Acknowledgements

Shashi Kulkarni Baylor Medicine *Chair*

Hutton Kearney Mayo Clinic

David Bick HudsonAlpha Institute for Biotechnology

Euan Ashley Stanford Medicine

Heidi Rehm Broad Institute

John Belmont Illumina

Teri Manolio NHGRI *Contributor*

David Dimmock Rady Children's Institute for Genomics

Vaidehi Jobanputra New York Genome Center

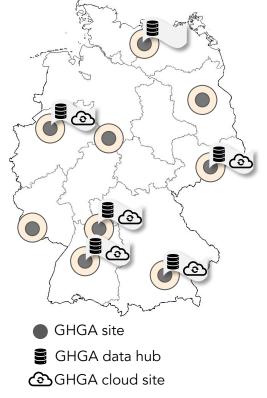
Christian Marshall The Hospital for Sick Children

GHGA and its role for Genome Medicine in Germany

Oliver Stegle

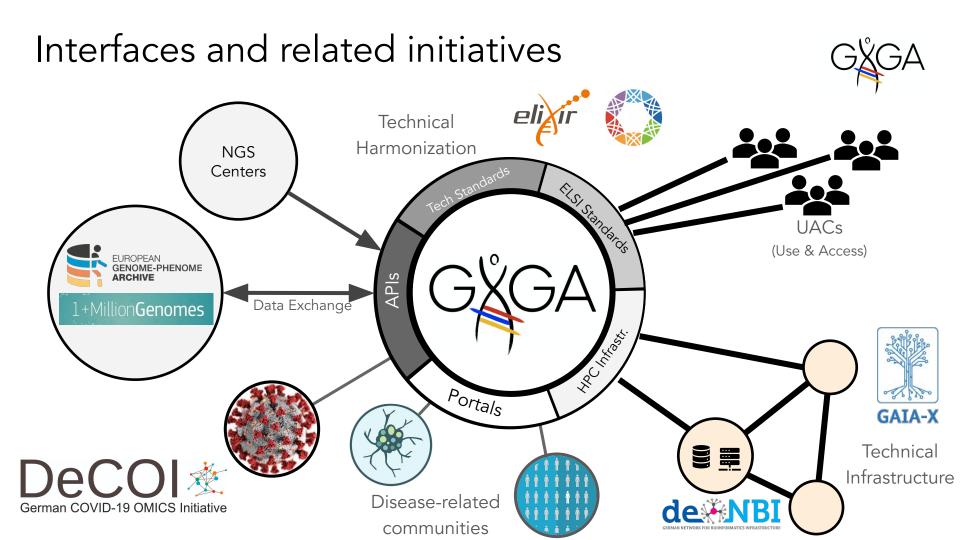
German Cancer Research Center & European Molecular Biology Laboratory

on behalf of the GHGA Directorate


- Secondary use of clinical omics data in research: biological discovery & replication of findings to show validity
- Rapid exponential growth of available data is a major challenge and opportunity
- Translation of research insights: delivering value in genomic medicine
- Requires a nationally coordinated infrastructure that integrates genome research and healthcare

Who we are

- One of the nine first-round NFDI consortia
- Network of data hubs co-located with major academic sequencing centers
- German national node within the federated European Genome-Phenome Archive (EGA)
- Connected to national cloud infrastructure (de.NBI cloud) for large-scale analyses


Goals & Core Objectives

Core Mission

Establish a national infrastructure for human omics data (genome, transcriptome, proteome, ...).

- Platform for long-term FAIR data archival of human omics data, connected to major omics centers in Germany
- Controlled access management and community-centered data sharing platforms
- Ethico-legal and data use framework for data sharing, protection & analysis
- Distributed analytics platform to democratize data processing and research use
- Establish strong Interfaces with international genome initiatives

Service portfolio: beyond data archival

Technical proficiency

Web Uls

Data Download ٩

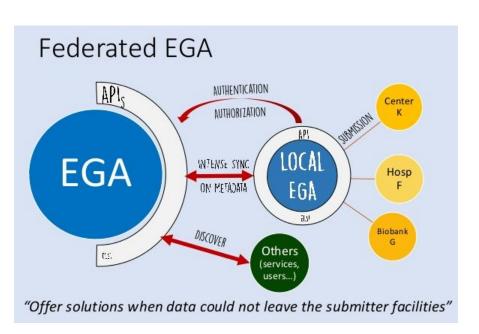
Distributed & cloud computing

Engagement with GA4GH activities

	A Communities	B Concepts	C Data	D Oper.	E Mgmt.
	A1 A2 A3	B1 B2 B3	C1 C2 C3 C4 C5	D1 D2	E1 E2
WG 1 Data Curation	•••		••••	••	-
WG 2 ELSI & Medical Phenotypes	•			••	-
WG 3 Standardized Data Processing & Analysis	$\bullet \bullet \bullet$			••	
WG 4 Metadata Standards & Harmonization			••••	••	-
WG 5 Data Security		•-•		••	-
WG 6 Operations					

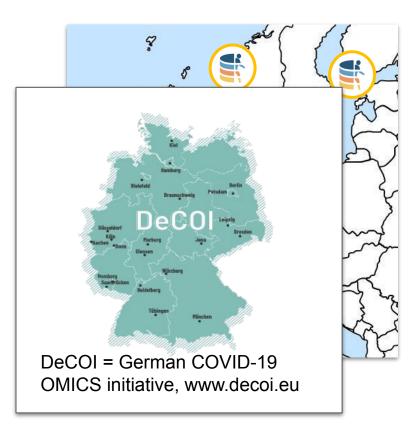
Further WGs as needed

European Genome-Phenome Archive (EGA) -Transition to a Federated Model


Why is international federation needed?

- Growing datasets: bring compute to data.
- Regulatory compliance: country-specific applicable law (based on GDPR*).

Implications


- National infrastructures required.
- International standards & data exchange mechanisms becoming crucial.

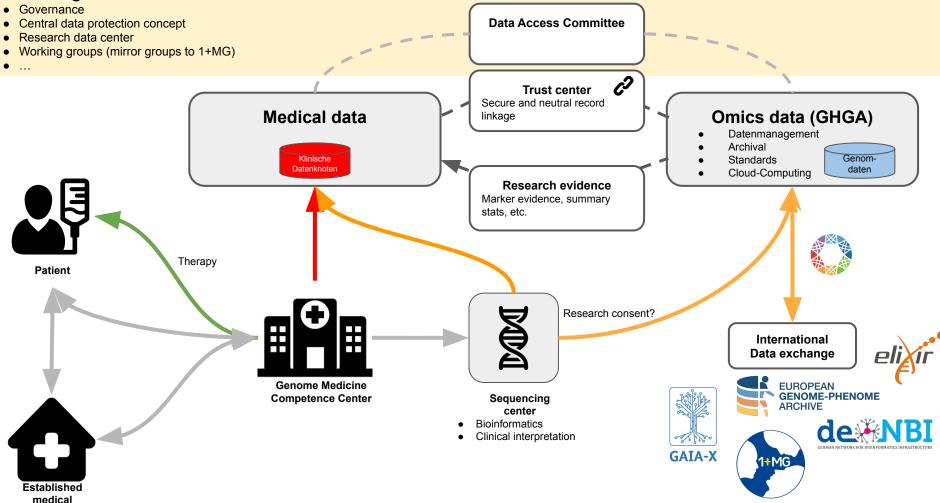
Federated infrastructure for European data sharing

1+Million**Genomes**

Europ federa

Central E

genomDE:


Nationale und europäische Genominitiativen

30. November 2020 DIGITALE VERANSTALTUNG

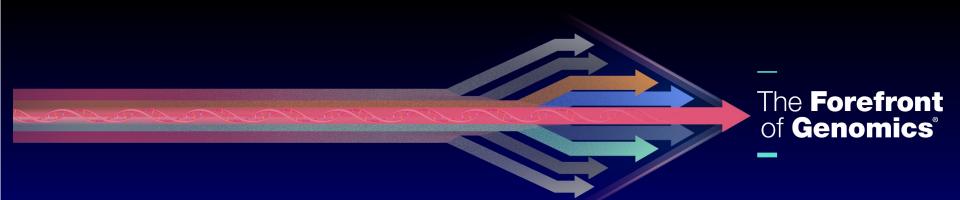
efördert durch das Prögramm zur Unterstützung von trukturreformen (SRSP) der Europäischen Union und umgesetz) 2 Zusammenarbeit mit der Generaldirektion Unterstützung von trukturreformen (GD REFORM)

National genome initiative

Acknowledgements

<u>Board of directors:</u> Oliver Steglez (DKFZ/EMBL), Oliver Kohlbacher (Univ. Tübingen), Jan Korbel (EMBL), Eva Winkler (Univ. Klinikum Heidelberg)

<u>Co-spokespersons:</u> Peer Bork (EMBL), Ivo Buchhalter (DKFZ), Andreas Dahl (TU Dresden), Julien Gagneur (TU Munich), Wolfgang Huber (EMBL), Daniel Hübschmann (DKFZ), Martin Lablans (DKFZ), Ulrich Lang (Univ. Cologne), Peter Lichter (DKFZ), Fruzsina Molnár-Gábor (Akadam. Wiss.), Susanne Motameny (Univ. Cologne), Sven Nahnsen (Univ. Tübingen), Uwe Ohler (MDC), Stephan Ossowski (Univ. Klinikum Tübingen), Annette Peters (HMGU), Olaf Rieß (Univ. Klinikum Tübingen), Philip Rosenstiel (Univ. Klinikum Schleswig-Holstein, Kiel), Thorsten Schlomm (Charité, Berlin), Joachim Schultze (DZNE), Jörn Walter (Univ. Saarland), Thomas Walter (Univ. Tübingen), Juliane Winkelmann (HMGU),


<u>Participants:</u> Thomas Keane (EMBL-EBI), Mario Fritz / Ninja Marnau (CISPA), Alice HcHardy (Helmholtz Center, Infectious Diseases), Stefan Fröhling (NCT Heidelberg), Hanno Glimm (NCT Dresden)

communities

Placeholder for Oliver's Slides

Education and Workforce Training in Genomics

Refocusing NHGRI Support of Genomic Medicine Training Programs: NHGRI 2020 Strategic Vision

Teri Manolio, M.D., Ph.D.

Genomics in Health Implementation Forum, 2021 Virtual Working Meeting March 9, 2021

The Forefront of Genomics

2020 NHGRI Strategic Vision

Perspective

Strategic vision for improving human health at The Forefront of Genomics

https://doi.org/10.1038/s41586-020-2817-4	Eric D. Green ¹⁵⁷ , Chris Gunter ¹ , Leslie G. Blesecker ¹ , Valentina Di Francesco ¹ , Carla L. Easter ¹ ,	
Received: 30 June 2020	Elise A. Feingold', Adam L. Felsenfeld', David J. Kaufman', Elaine A. Ostrander', William J. Pavan', Adam M. Phillippy', Anastasia L. Wise', Jyoti Gupta Dayal', Britny J. Kish',	
Accepted: 4 September 2020	Mitson Mandich, Christopher R. Weilington', Kris A. Weiterstrand', Saar M. Bates', Allison Mandich', Christopher R. Weilington', Kris A. Weiterstrand', Sarah A. Bates', Darry Leja', Susan Vasquez', William A. Gah', Bettle J. Graham', Daniel L. Kastner', Paul Liu', Laura Lyman Rodriguez', Benjamin D. Solomon', Vence L. Bonham', Lawrence C. Brody',	
Published online: 28 October 2020		
Check for updates	Carolyn M. Hutter [*] & Terl A. Manollo ¹	

Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward-that is. at 'The Forefront of Genomics'.

Beginning in October 1990, a pioneering group of international of biomedical research, medical practice, and society. The scope, scale, researchers began an audacious journey to generate the first map and and pace of genomic advances so far were nearly unimaginable when sequence of the human genome, marking the start of a 13-year odyssey the Human Genome Project began; even today, such advances are yieldcalled the Human Genome Project¹⁻³. The successful and early completion of the Project in 2003, which included parallel studies of a set of with many more anticipated in the next decade. model organism genomes, catalysed enormous progress in genomics research. Leading the signature advances has been a greater than one million-fold reduction in the cost of DNA sequencing⁴. This decrease has for the field at key inflection points, in particular at the end of the Human allowed the generation of innumerable genome sequences, including hundreds of thousands of human genome sequences (both in research and clinical settings), and the continuous development of assays to ties for human genomics research, in each case informed by a multi-year identify and characterize functional genomic elements⁵⁴. These new tools together with increasingly sonhisticated statistical and computer an undated strategic vision for human genomics research. Through a tational methods, have enabled researchers to create rich catalogues of planning process that involved more than 50 events (such as dedicated human genomic variants78, to gain an ever-deepening understanding of the functional complexities of the human genome⁵, and to determine (see http://genome.gov/genomics2020), the institute collected input the genomic bases of thousands of human diseases⁹⁴⁰. In turn, the past from a large number of stakeholders, with the resulting input catalogued decade has brought the initial realization of genomic medicine¹¹ as research successes have been converted into powerful tools for use in healthcare, including somatic genome analysis for cancer (enabling development of targeted therapeutic agents)12, non-invasive prenatal genetic screening¹⁰, and genomics-based tests for a growing set of illustrated in Fig. 2, During the Human Genome Project, NHGRI was paediatric conditions and rare disorders¹⁴, among others,

the human genome and ever-improving laboratory and computational greater than tenfold increase in the relative fraction of funding coming technologies, genomics has become increasingly woven into the fabric from other parts of the NIH.

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. ¹⁰e-mail: egreen@nhgri.nih.go

Embracing its leadership role in genomics, the National Human

Genome Research Institute (NHGRI) has developed strategic visions Genome Project in 200315 and then again at the beginning of the last decade in 201116. These visions outlined the most compelling opportuniengagement process. NHGRI endeavoured to start the new decade with workshops, conference sessions, and webinars) over the past two years and synthesized using the framework depicted in Fig. 1.

Unlike the past, this round of strategic planning was greatly influenced by the now widely disseminated nature of genomics across biomedicine. A representative glimpse into this historic phenomenon is the primary funder of human genomics research at the US National In essence, with growing insights about the structure and function of Institutes of Health (NIH), but the past two decades have brought a

Nature | Vol 586 | 29 October 2020 | 683

The Forefront of **Genomics**®

Nature 2020:586:683-92, PMID 33116284

NHGRI Training and Education Task Force Recommendations

- Expand genomic research training opportunities for individuals in affiliated fields (e.g. genetic counselors, genetic laboratory fellows, nurses, etc.)
- Develop new grant programs to develop and disseminate training modules
- Establish ambitious goals and milestones to increase both number/size of awards and the representation of women and underrepresented minorities

Training Implementation Plan Objectives, Apr 2020

- 1. Expand opportunities for individuals who need **focused research training to become effective genomic researchers**, such as genetic counselors and data scientists.
- 2. Attract individuals not traditionally represented in genomics such as women and underrepresented minorities.
- 3. Increase knowledge and use of genomics among individuals in related non-genomic disciplines such as nurses and physicians.
- 4. Assess training programs, address deficiencies, and disseminate effective approaches.
 - Funding Levels: Increase from 4% to 6% of extramural budget over 5 years; roughly \$1.5M/yr x 5 yrs, reassess and consider additional \$3-4M increase

Training Nurses in Genomic Research

Support training of nurse researchers in genomics, enabling them to:

- Use informatics and precision medicine approaches to advance health equity and facilitate evidence-based practice in underserved populations
- Conduct interdisciplinary research using informatics and precision medicine approaches to advance health equity and facilitate evidence-based practice in underserved populations
- Conduct biobehavioral research in symptom science, with specialized focus on genomics in symptom research

Training Genetic Counselors in Genomic Research

Provide genomics research experiences for genetic counselors, enabling them to:

- Assist with conduct of research and become more effective members of research team
- Contribute research questions designed to explore implications of living with genomic risk
- Lead research efforts to inform the most effective delivery of genetics/genomics services

Genomic Medicine Training Modules

Develop and implement modules providing health care professionals training in genomic medicine topics

- Clinical use of genomic data and tests
- Analysis of clinical genomic data
- Pharmacogenomics
- Use of genomic information for preventive medicine,

Health care professionals include physicians, physician assistants, nurse practitioners, nurses, genetic counselors, pharmacists

Modules can be designed to stand alone or to build upon each other to form a certificate in genomic medicine to identify health care professionals with specialized expertise and consultative capabilities

Begin your search here

Home / Careers and Training / Training Modules in Genomic Medicine for Healthcare Professionals

Training Modules in Genomic Medicine for Healthcare Professionals

U Texas Houston: UTHealth Adult Cardiovascular Genomics Certificate Program

• Allied health professionals, nurse practitioners, nurses, physicians

Indiana U/Purdue U: *Test2LearnTM* Pharmacogenomics Education for Health Practitioners

 Genetic counselors, nurse practitioners, nurses, pharmacists, physician assistants, physicians

Duke U: Health Professional Rapid Personalized Learning Platform for Genomic Medicine

• Nurses, pharmacists, physician assistants, physicians

Funding for Research Training

NHGRI Training Mission: Prepare a diverse and talented genomics workforce that is operating at the forefront of genomics in order to accelerate scientific and medical breakthroughs to improve human health.

The National Human Genome Research Institute (NHGRI) provides both institutional and individual funding to help scientists develop their skills as researchers and professionals. Our programs offer opportunities at the undergraduate, postbaccalaureate, graduate, postdoctoral and faculty levels.

Explore this Page

Overview >	Courses >	Locations of NHGRI-
		Supported Training
Undergraduate and	Predoctoral >	Programs >
Postbac >		
	Institutional T32 Training	Meetings and Workshops >
Ph.D. and M.D./Ph.D. >	Grants >	Western Merch Charles and Article
		Staff Contacts >
Research Supplements >	NIH Loan Repayment	
	Program >	

The African Genomic Medicine Training Initiative

Nicky Mulder On behalf of AGMT team

Slide credits Dr Vicky Nembaware

African genetic diversity & medicine

- Africa suffers a disproportionate burden of disease
- HIV/AIDS, TB & malaria dominate research on the continent
- Increase in prevalence of non-communicable disease
- African genomes have higher diversity, variants for diseases may be specific to African populations
- Different evolutionary exposures -compensatory variants found in African populations
- Genomic medicine knowledge based mostly on other populations
- African genomics is important, but currently a lack of data & skills

African Genomic Medicine Training Initiative -Launch

12 May – 2016: Dakar Senegal

Needs Assessment of Targeted Learners

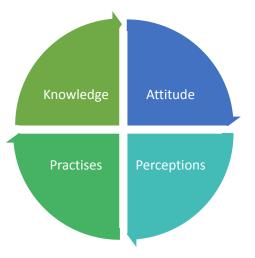
May 11, 2016

Preparing for Genomic Medicine Nurse Training in Africa

By Victoria Nembaware, Nicola Mulder, Raj Ramesar Introduction

Recent advances in high-throughput sequencing and genotyping technologies are helping unravel complex relationships that exist between health, genetics and genomics¹. Genetics is the study of inheritance and focuses mainly on understanding the function and composition at a single gene level while genomics addresses all genetic information of an individual, and attempts to identify their collective influence on an individual's growth, development and responses to the environment². Progress in the genomics and genetics field is driving the boundaries of medicine and healthcare into the "Genomic Medicine" era³. Genomic Medicine is defined as "an emerging medical discipline that involves using genetic/genomic information about an individual as part of their clinical care (e.g., for diagnostic or therapeutic decision-

USEFUL RESOURCES

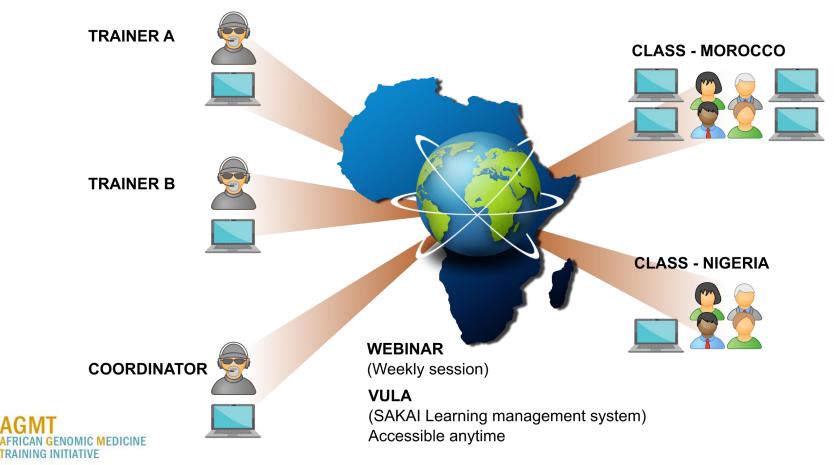

GRN_Genetics Article_pdf 168.7 KB

RELATED ARTICLES

Evidence-based medicine for all: what we can learn from a

Goals and Specific Objectives for the Training

- Developed different nurse persona
- Developed competencies required for nurses
- Developed curriculum based on competencies


- Patient care genetic and genomics information (sensitive to individual and cultural preferences and norms)
- Offer **basic genetic counselling t**o patients and families
- Conduct genomics research that is **ethical and appropriate** to their context
- Address stigma and discrimination

Example modules

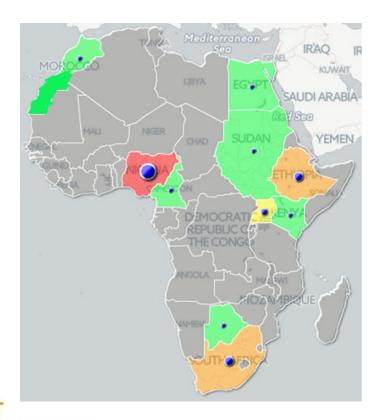
Introduction	Ethics, Social and Genetic Counselling	Application of Genomic Medicine
 Patterns of Genetic Transmission in Humans Genes, Genome Structure and Function Molecular Diagnostics and Bioinformatics Techniques 	 Ethical, Legal & Social Issues in Applied Genomics Community Engagement in Genomic Research Basic Genetic Counselling Skills 	 Genomics of Monogenic Disorders Molecular pathology of Cancer and Application in Cancer Diagnosis, Screening and Treatment Application of Genomics to Non-Communicable disease The gastrointestinal microbiome Nutrigenomics
Built on existing content, adapted to African context		 Pharmacogenetics & Pharmacogenomics for nurses in Africa Clinical Research Skills and Genetic Epidemiology Infectious Disease

Distance, Flipped Class & Problem Based Learning

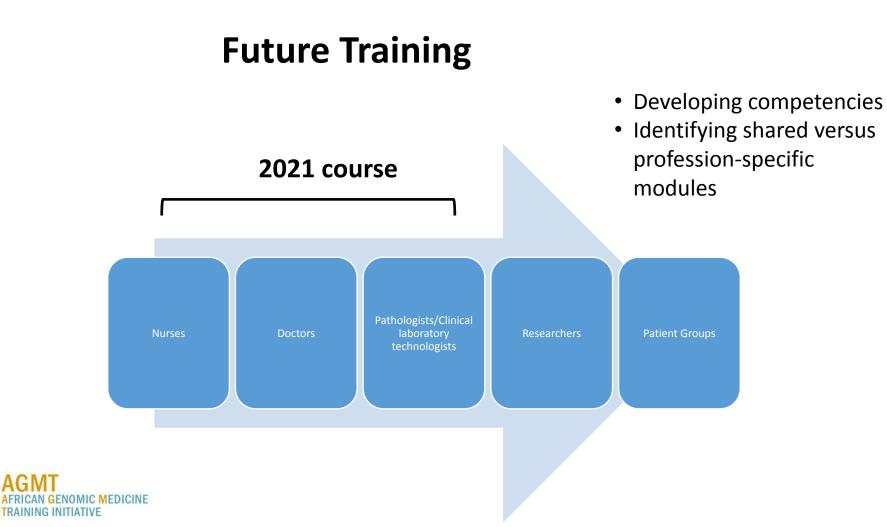
Evaluation and Feedback

Global Health, Epidemiology and Genomics

Call for Papers -Genomic Medicine in Global Health



Implementation – run 2 iterations



MIC MEDICINE

RAINING INITIATIVE

2017: 19 Classrooms in 11 Countries - Facilitators, 1 Online Class, 225 students registered

2019: 21 Classrooms in 14 Countries – 1300 applications, 367 students registered

AGMT contributors

- Advisors
- Planning Committee
- Trainers
- Facilitators
- Participants

NOMIC MEDICINE

TRAINING INITIATIVE

Southern African Human Genome Programme

EMBL-EBI

GOBLET

Vicky Nembaware Paballo Chauke Faisal Fadlemola, Samar Kassim Fouzia Radouani Michael Pepper Raj Ramesar Guida Landore Michele Ramsay Misaki Wayengera Sarah Morgan

. . . .

Quality Control of WGS Results

QUALITY CONTROL OF WGS RESULTS

Oliver Hofmann (AGHA) Mar Gonzalez-Porta (SG NPM)

2021 March Virtual GHIF Meeting 9 MARCH 2021

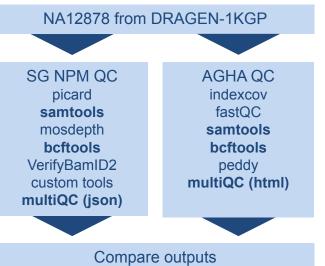
Background

MOTIVATION

- Good quality data is a prerequisite for reliable downstream analysis
- Strategies for robust QC:
 - Validation with reference materials (GIAB, SEQC-II) following standardised best practices (GA4GH)
 - Ongoing QC of real samples multiple guidelines (ACMG, CAP-AMP, MGI...), however the lack of standardised implementations still poses challenges to initiatives

Background

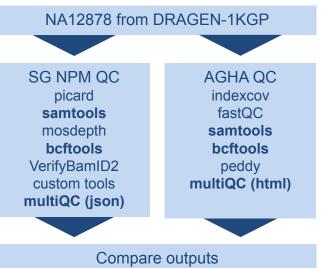
MOTIVATION


- · Good quality data is a prerequisite for reliable downstream analysis
- Strategies for robust QC:
 - Validation with reference materials (GIAB, SEQC-II) following standardised best practices (GA4GH)
 - Ongoing QC of real samples multiple guidelines (ACMG, CAP-AMP, MGI...), however the lack of standardised implementations still poses challenges to initiatives

USER STORIES

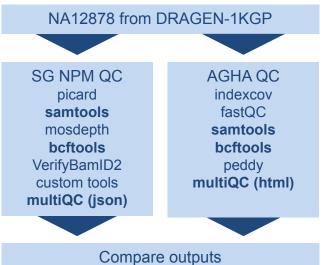
- Data generation
 - Choice of metrics and tools requires curation
 - e.g. 82 metrics from 13 tools in the SG-NPM QC pipeline
 - Shared metric names \neq directly comparable results
 - e.g. genome coverage, %Q30
- Data sharing
 - QC after downloading vs. accessing only the relevant samples

Hear more: GHIF Fall 2020 – Day 2 https://youtu.be/qQrdd_3-e5Q?t=2483


SET UP

Yield and quality * Alignment Variant calling * Contamination & PST

SET UP


Yield and quality * Alignment Variant calling * Contamination & PST

OBSERVATIONS

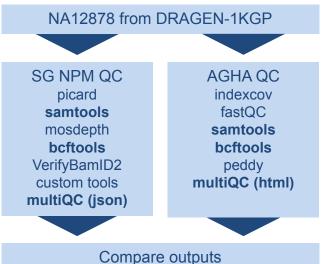
• Different approaches to QC

e.g. stand-alone vs. embedded workflows; plot vs. single-value based assessments

SET UP

Yield and quality * Alignment Variant calling * Contamination & PST

OBSERVATIONS


• Different approaches to QC

e.g. stand-alone vs. embedded workflows; plot vs. single-value based assessments

· Overlap in tools varied across metric categories

e.g. common use of bcftools for variant stats; different checks for contamination and PST

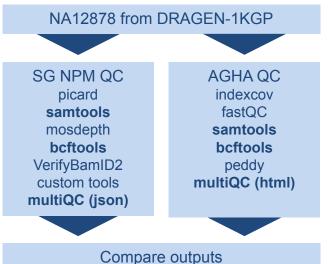
SET UP

Yield and quality * Alignment Variant calling * Contamination & PST

OBSERVATIONS

• Different approaches to QC

e.g. stand-alone vs. embedded workflows; plot vs. single-value based assessments


• Overlap in tools varied across metric categories e.g. common use of bcftools for variant stats; different checks for

e.g. common use of bcftools for variant stats; different checks for contamination and PST

• Matching results most common when using the same tool, but also seen across different tools

e.g. % duplicates from samtools; N reads from samtools / picard

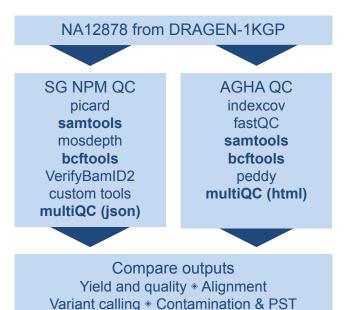
SET UP

Yield and quality * Alignment Variant calling * Contamination & PST

OBSERVATIONS

• Different approaches to QC

e.g. stand-alone vs. embedded workflows; plot vs. single-value based assessments


Overlap in tools varied across metric categories e.g. common use of bcftools for variant stats; different checks for contamination and PST

• Matching results most common when using the same tool, but also seen across different tools

e.g. % duplicates from samtools; N reads from samtools / picard

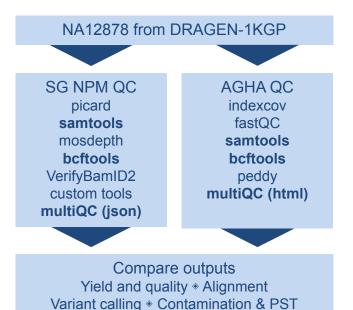
• Some mismatching results could be considered equivalent e.g. % aligned reads including all / paired reads, mean insert size

SET UP

OBSERVATIONS

Different approaches to QC

e.g. stand-alone vs. embedded workflows; plot vs. single-value based assessments


• Overlap in tools varied across metric categories e.g. common use of bcftools for variant stats; different checks for contamination and PST

• Matching results most common when using the same tool, but also seen across different tools

e.g. % duplicates from samtools; N reads from samtools / picard

- Some mismatching results could be considered equivalent e.g. % aligned reads including all / paired reads, mean insert size
- Large differences were also observed e.g. 4X difference in coverage; yield as N reads or Gbp

SET UP

OBSERVATIONS

• Different approaches to QC

e.g. stand-alone vs. embedded workflows; plot vs. single-value based assessments

• Overlap in tools varied across metric categories e.g. common use of bcftools for variant stats; different checks for contamination and PST

• Matching results most common when using the same tool, but also seen across different tools

e.g. % duplicates from samtools; N reads from samtools / picard

- Some mismatching results could be considered equivalent e.g. % aligned reads including all / paired reads, mean insert size
- Large differences were also observed e.g. 4X difference in coverage; yield as N reads or Gbp

Agreeing on QC metrics is insufficient – need for standardised definitions

Towards a reference implementation

PROPOSED SCOPE

- Focus on human WGS, germline, short-reads
- Provide:
 - Standardised metric definitions (incl. defining metadata and schema/file formats for sharing)
 - A reference implementation (standalone QC workflow)
 - Benchmarking data (to compare vs. in-house workflows, share QC approaches...)

The main goal is to define a common language – there's no single solution to QC!

Towards a reference implementation

PROPOSED SCOPE

- Focus on human WGS, germline, short-reads
- Provide:
 - Standardised metric definitions (incl. defining metadata and schema/file formats for sharing)
 - A reference implementation (standalone QC workflow)
 - Benchmarking data (to compare vs. in-house workflows, share QC approaches...)

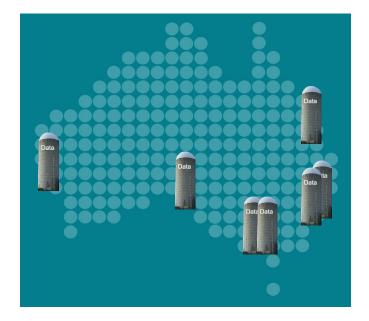
The main goal is to define a common language – there's no single solution to QC!

NEXT STEPS

- Send your feedback and take part in the proof-of-concept <u>http://j.mp/3rqi9IZ</u>
- Explore ties with GA4GH
 - e.g. search / discovery of files, refget, file formats

Variant Curation

Shariant: National approaches to knowledge sharing between labs and globally


Amanda Spurdle (Lead) Emma Tudini (Project Co-ordinator) James Andrews (Lead Developer) David Lawrence (Developer) Hamish Scott (Program 1 Reclassification)

Australian Context

The problem...

- Australian genetic testing labs worked in silos and did not regularly share knowledge
- Australian clinical accreditation guidelines encourage sharing of variant
- No (formal) between-lab sharing
- Few submissions to ClinVar >> 250 variants at the time of project initiation

Consultation is KEY!

Barrier to sharing	Solution
Resources	- Automated connection to laboratory interpretation
- No time	tool/database
- Limited bioinformatic expertise	- Shariant developer to assist in connection
Consent	- Controlled access platform
- what can be shared and with whom?	- Laboratories decide on extent of (clinical) data to be shared
Interpretation tools differ between laboratories,	 Sharing agnostic to interpretation tool/s
and can change over time	- Flexibility in connection solutions
	 Work with vendors to improve connection
"Just another (static) database to check"	- "Real-time" connection from laboratory system to view other
Paraphrased somewhat	variants submitted nationally

Other issues/Incentives to share	Solution
Database stores sufficient evidence to allow review/re-use of existing curations	- Submission of structured evidence against ACMG guidelines
Identification and resolution of discrepancies prior to international sharing	- Discrepancy resolution tooling
Streamlined submission to ClinVar	- Automated formatting to ClinVar specifications, ClinVar API

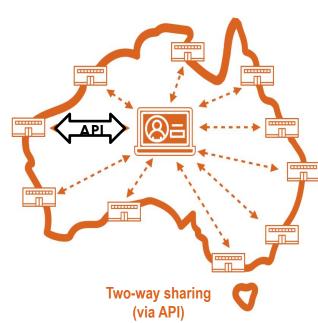
Shariant: National Clinically Interpreted Variant Sharing Platform

- Needs defined in consultation with Australian diagnostic labs

- Documented a set of key criteria to assess potential solutions

- Investigated commercial, open source, national, international options (9)

- Formal trial of three platforms >> Shariant


Platform to automate sharing

- <u>clinically</u> interpreted (germline) variants between diagnostic labs in "real" time

Sharing of structured evidence and expertise - Based on ACMG guidelines

Discrepancy resolution via email notifications and in-built communication platform

Submission to international databases upon laboratory approval

(
8	<u>; =)</u>	
		J
onti	rolled	access

С

Consultation > Engagement

STEP 1: Initial

Contact

STEP 2: Send Terms of Use

Ę

Mapping of evidence between systems

→

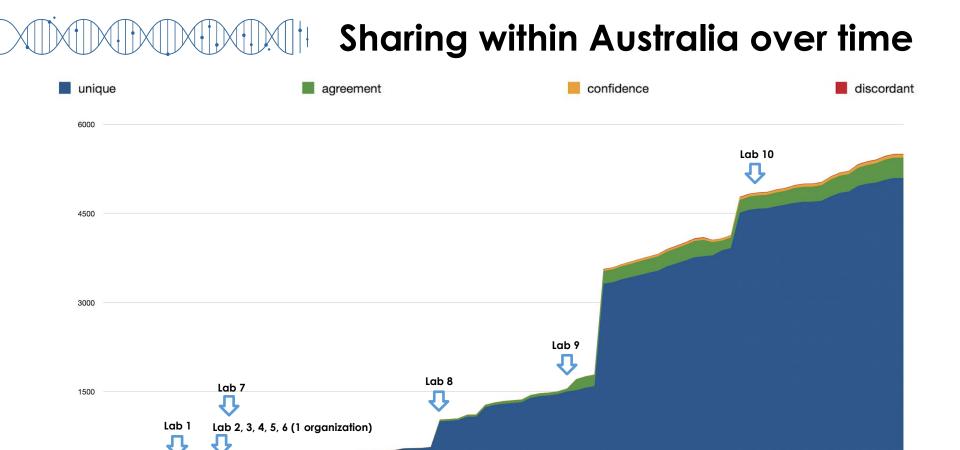
STEP 3: STEP 4: Technical connection to Shariant

Sign Off

STEP 5: Terms of Use

Prospective variant sharing!

>5500 variants shared across 10 labs in 4 states


N/A

Organization signed TOU & sharing Organization signed TOU Organization close to signing TOU

Terms Of Use

- Limited to Australian clinically accredited laboratories
- Additional documentation around security, and technical connection
- Minor amendments introduced with every new organization
- Automated notification to accept minor amendments
- Significant hurdle (1 week to > 1.5 years)

2020-04-06

2020-06-01

2020.01.27

020.09.21

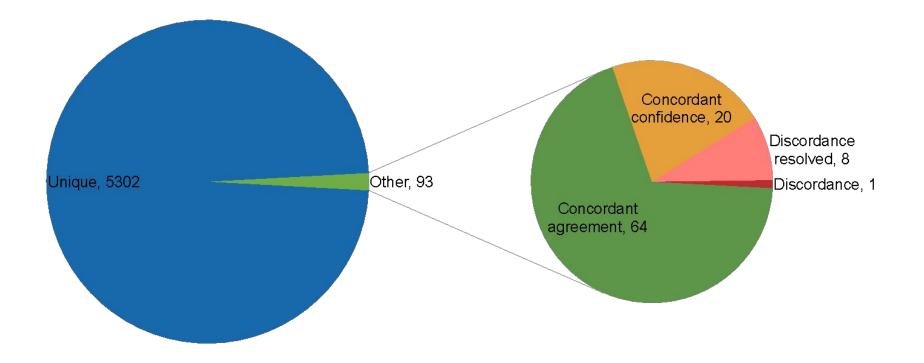
202011-16

2021.01-11

2021.03.08

2019:12:10

2019-10-21


2020-02-10

0

2019:07:01

2019-08-26

Concordance and Discordance

Resolution of discordances

Classification Diff

Configure columns	Lab 1 hg19_NM_004360_3_CDH1_c_1913G_A 23/Feb/2021 18:33	Lab 2 hg38_NM_004360_3_CDH1_C_1913G_A 28/Jan/2021 09:14
Show unmet ACMG criteria	🗢 🔅 🎯	🖚 😳 🎯
Variant		
≠ Source ID	Shariant_RMH_GRCh37-Molecular_variants- 2020-08-10_05-48-51.json:905	Shariant_VCGS_GRCh38- Molecular_variants-2020-08-10_05-48- 06.json:918
🗹 Gene symbol	CDH1	CDH1
≠ Genome Build	GRCh37.p13	GRCh38.p2
🖾 RefSeq Transcript ID	NM_004360.3	NM_004360.3
🜌 c.HGVS	NM_004360.3(CDH1):c.1913G>A	NM_004360.3(CDH1):c.1913G>A
💆 p.HGVS	p.W638'	p.W638*
Zygosity	Heterozygous	Heterozygous
🛂 Allele origin	Germline	Germline
🜌 Exon	12	12
Gene		
≠ Condition under curation	MONDO:0007648	xx
Patient		
Affected status	Affected	
Test		
Population data		
BA1	Not Met 0	Not Met
BS1	Not Met 0	Not Met
BS2	Not Met 0	Not Met
🖾 PM2	Pathogenic Moderate	Pathogenic Moderate
≠ PS4	Pathogenic Supporting*	Pathogenic Strong
🖾 gnomAD	0.002%	
Computational and predictive data		
≠ PVS1	Pathogenic Very Strong	Pathogenic Moderate"
BP4	Not Met	Not Met
PP3	Not Met	Not Met
BP7	Not Met 0	Not Applicable
BP3	Not Met	Not Met
PM4	Not Met 0	Not Met
BP1	Not Met	Not Met
≠ PM5	Not Met 0	Pathogenic Very Strong*
PS1	Not Met 0	Not Applicable

Citations	
PMID: 17660459 [2] Masciari et al 2007 Germline E-cadherin mutations in familial lobular breast cancer. Toggle detail	
✓ PMID: 30745422 ^[2] Lo et al 2019 Associations of CDH1 germline variant location and cancer phenotype in families with hereditary diffuse gastric cancer (HDGC). Toggle detail	
✓ PMID: 31296550 ^[2] Xicola et al 2019 Clinical features and cancer risk in families with pathogenic CDH₁ variants irrespective of clinical criteria. Toggle detail	

- Platform designed and tested to record details of interactions
 - But this aspect is not being used!
- Consultation underway to alter design to meet user needs.....

Flexibility is important

Global Sharing

- Laboratories are encouraged to submit to public databases
 - But the decision rests with each laboratory
- So far all laboratories want to submit to ClinVar
 - Prefer Shariant to facilitate submission on their behalf (with recognition to the laboratory)
- ClinVar submission requires standardization of "condition curated against"
 - Majority of Shariant records did not have a standard condition term/ID ...
- Shariant functionality extended to convert free text conditions to MONDO terms
 - Incorporates gene-disease relationships from MONDO, Gene Curation Coalition, PanelApp Australia
 - Exact match to MONDO title is auto-assigned condition, with validation
 - Laboratory must review and agree to additional suggested condition-matches
 - Standardized terms can now be returned to the laboratory for re-use

Impact – discordance resolution

"We were able to provide a diagnosis to a family as a result of additional information detected via Shariant from another Australian laboratory*.

Sharing information between two Australian laboratories about a specific rare gene variant allowed us to make the diagnosis of a cardiac condition in a family within a matter of weeks.

This result can now be used to guide treatment plans for multiple family members with the aim of preventing long-term complications."

Victorian Clinical Genetics Services

* Segregation data from one laboratory. Review of information by second laboratory..

More recent success story

Real-time classification – Victorian Clinical Genetics Services

- Laboratory WES filtering altered to include lookup to Shariant
- Pathogenic variant identified in "recessive" gene
- Another variant in same gene prioritized by filtering
 - due to presence in Shariant
 - curation evidence available for review
 - variant classified as pathogenic by laboratory
- Rapid diagnosis of recessive condition for critically ill infant

Acknowledgements

The many individuals & labs involved in conception, development and implementation of Shariant!

Australian Genomics Program 2 Amanda Spurdle Emma Tudini James Andrews David Lawrence Tiffany Boughtwood Marie-Jo Brion Natalie Thorne

Australian Genomics Program 1 Hamish Scott

Sarah King-Smith Matilda Jackson Matilda Haas Tessa Mattiske

Australian Genomics Program 4

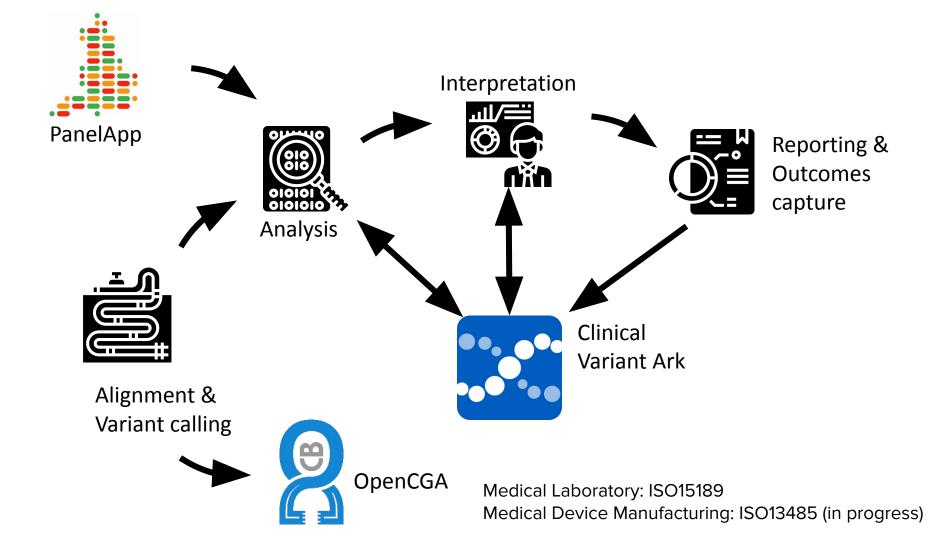
Stephanie Best

Sites connected

Karin Kassahn Lesley Rawlings Kathy Cox Andrew Dubowsky Janice Fletcher Kathryn Friend **Evelyn Douglas** Linda Burrows Louisa Sanchez Sinlay Kang Sebastian Lunke

7ornitza Stark Naomi Baker Anthony Marty James U Belinda Chong Dean Phelan Miriam Fanjul Fernandez Sarah-Jane Pantaleo Bryony Thompson Lauren Akesson Bruce Bennetts Gladys Ho

Shariant is built using VariantGrid technology


Rahul Krishnaraj Anja Ravine Emma Hackett Katherine Holman Katrina Fisk John Beilby Cheryl Wise Michael Black Mark Davis Richard Allcock Amanda Hooper Australian Genomics Alliance

Clinical Variant Ark: Case-level data in support of variant classification

Augusto Rendon on behalf of a lot of people at Genomics England

augusto.rendon@genomicsengland.co.uk

Genomic data and knowledge infrastructure

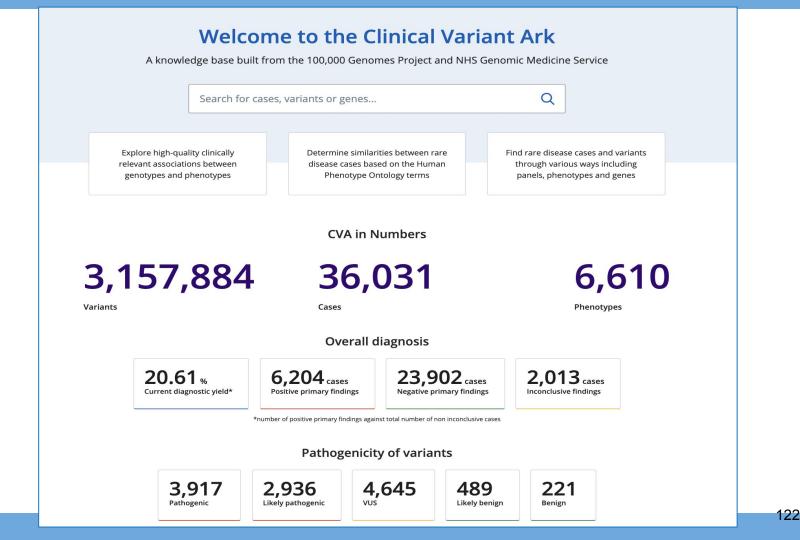
Clinical Variant Ark

Crowd-sourced knowledgebase of gene-disease relationships and the evidence behind it.

Knowledgebase of clinically relevant variant-phenotype relationships captured throughout the interpretation process

OpenCGA

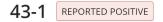
Population scale database of all variant phenotypes and all phenotypes


All open source

Key features of CVA

- One knowledge base for all of England (7 lab hubs, for 55 million people)
- Stores the case level information, going beyond the reported variants (think up to 1000 variants per case)
 - Prioritised by humans or by computers
 - Curated
 - Reported
- Operational database, in the sense that updates to cases are manifested in the database in real-time (not an archival or submission system)
- Integrated into the interpretation processes by users in the NHS

Key features of CVA (cont)


- Case, variant and gene view
- GUI, python client and REST API
- (to come) Direct submission to ClinVar
- Currently only manages germline findings

CVA P	ortal				● 100 ● GM
DxYield					20.61% Current diagnostic yield*
Clinical Indication 🔶	Total Cases 🍦	Archived Cases 🧃 🍦	Positive Diagnosis 🚺 🔶	Negative Diagnosis 🧃	➡ Diagnostic Ŷield (i)
Intellectual Disability	6716	6030	1470	4043	0.26664248
Ultra Rare Undescribed Monogenic Disorders	1405	1314	177	1069	0.14205457
Cystic Kidney Disease	1325	1292	664	545	0.54921424
Epilepsy Plus Other Features	1386	1170	114	989	0.10335449
Rod Cone Dystrophy	1233	1158	428	666	0.39122486
Congenital Anomaly Of The Kidneys And Urinary Tract (Cakut)	1017	974	46	904	0.04842105

Q

BETA application - The information on this website is not intended for direct diagnostic use. The CVA Portal does not independently verify the submitted information. If you have any feedback or queries, contact us at ge-servicedesk@genomicsengland.co.uk

Patient ID 117000549 Year of birth 1992 Sex Female

Created 9 Feb 2020 Last modified 18 Feb 2021 Assembly GRCh38 Requesting organisation Oxford University Hospitals NHS Trust

View on Interpretation Portal 🗹 🕴 View Summary of Findings 🕙 🕴 View Reported Outcomes Questionnaire 🗹 👘 View Phenotypically Similar Cases 🗹

Case View + "Interpretation Log"

Clinical Indications	Applied panels
Left ventricular noncompaction cardiomyopathy	Arrhythmogenic cardiomyopathy (2.2) 🗹 Left Ventricular Noncompaction Cardiomyopathy (1.3) 🗹 Hypertrophic cardiomyopathy - teen and adult (2.1) 🗹 Dilated Cardiomyopathy and conduction defects (1.65) 🗹

HPO terms for all family members

Syncope 🗹 🛛 Hypertrophic cardiomyopathy 🗹 🔹 Paroxysmal ventricular tachycardia 🗹

Pedigree

Family ID 117000549

Member	Sex	Year of birth	Clinical Indications - age of onset	Patient ID	Sample ID
Proband	F	1992	Left ventricular noncompaction cardiomyopathy- 23 years old	117000549 岱	LP3000035-DNA_F05
Paternal Uncle	М	1972	Left ventricular noncompaction cardiomyopathy- 44 years old	117000548 岱	LP3000036-DNA_H07

Showing all members

tient ID 112000539 eated 9 Feb 2020 Last a w on Interpretation Po Variant Gene Type Consequence type Interpreted by						OR2T12		3-1 ARCHIVE
Zygosity Proband Paternal Uncle			~		~			tient ID 112000539 ated 9 Feb 2020 Last r
	Cases with th varian	Proband Pate	Interpreted by	Consequence type	Туре	Gene 🍦	Variant 🖕	w on interpretation Po
1:2492051224C-T OR2T12 SNV Missense variant Exomiser View Interpretation Log T ENSG00000177201 12 Tiering T Image: Compound Heterozygous	12	• 0	Tiering 🖪	Missense variant	SNV		View Interpretation Log	
1:248295419:G:A OR2T12 SNV Missense variant Exomiser Compound Heterozygous ENSG00000177201 12 Tiering 1	12	• 0		Missense variant	SNV			

Clear all filters	All Gene Symbol OR2T12	1:248295422:G:T Variant type SNV Variant assembly GRCh38		LIKELY-PATHOGENIC OR2T12
	Reported variants All	Variant Interpretation Logs ③		
		OPA-43-1		
Variant 🚖	Gene 🚖	LIKELY PATHOGENIC		PM2 PVS1
1:248295422:G:T View Interpretation Log	OR2T12 ENSG00000177201	Comments [2020-07-24] saw this was LP in CVA so added new evid	ence	
1:248295419:G:A Compound Heterozygous	OR2T12 ENSG0000177201	[2020-07-24] chris updated log XXXXXX		
		[2020-07-10] chris test log		
Genomics	ngland	Created by: christopher.boustred@genomicsengland.co.uk	Created date: 24 Jul 2020	Validation status: Confirmed

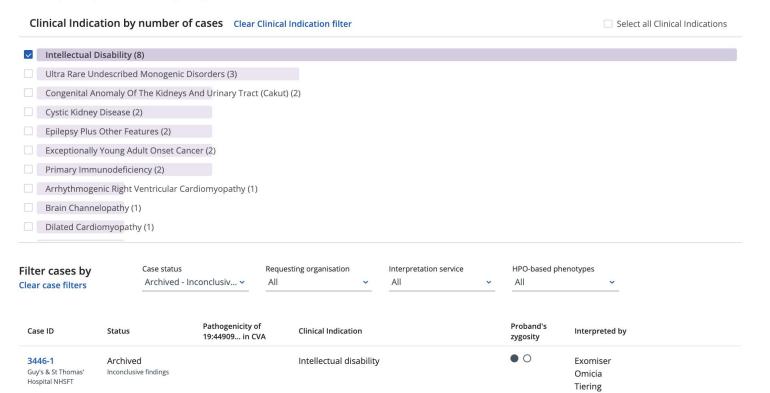
Variant view

Cases by interpretation services 💿

O Pathogenic **O** Likely pathogenic **2** VUS **O** Likely benign **O** Benign

38 Tiering 1 Exomiser 0 Omicia 3 Congenica

Overlapping genes


Phenotypic summary of variant

HPO terms present (number of cases)

Global developmental delay (7) 답	Delayed speech and language development (6) 🗹 Delayed fine motor development (4) 🗹
Delayed gross motor development (4) 🗹 Microcephaly (4) 🗹	Seizures (4) 🖄 Chronic kidney disease (3) 🖄 Dyspnea (3) 🖄 Dystonia (3) 🖄 Hypertension (3) 🖄
Proportionate short stature (3) 🗹 Urinary urgency (3) 🗹 🛛	bnormal facial shape (2) 앱 🛛 Arrhythmia (2) 앱 🗍 Breast carcinoma (2) 앱 🗍 Dysphagia (2) 앱
Enlarged kidney (2) ♂ Falls (2) ♂ Fatigue (2) ♂ Gastroe	sophageal reflux (2) 전 Headache (2) 전 IgM deficiency (2) 전 Immunodeficiency (2) 전 Mild (2) 전

Cases with variant 19:44909101:C:G

There is a possibility of incidental findings being shown. Select Clinical Indications to view cases with this variant.

Showing all cases

Gene View

Classified variants in LDLR

Variants are those reported in the outcomes questionnaire that are within the chromosomal co-ordinates of the gene with a start and end base of +/- 1000bp.

Transcript used ENST00000558518 🗹 💿

Filter variants by	Consequence type		Max allele frequency		Max homozygous frequer	ncy
Clear all filters	All	~	All	~	All	~

Variant (GRCh38) 🍦	Туре	Exon	Consequence type 💠	Max allele 🔶	Max homozygous frequency	Pathogenicity in	Cases with the variant
19:11116969:G:T	SNV	12/18	Missense variant	0.0006	0.0000	Pathogenic	22
19:11111538:A:C	SNV	8/18	Missense variant	0.0005	0.0000	VUS	11
19:11120436:C:T	SNV	14/18	Missense variant	0.0005	0.0000	Pathogenic	6
19:11105588:G:T	SNV	4/18	Stop gained	0.0005	0.0000	Pathogenic	4
19:11131339:C:A	SNV	18/18	3 prime utr variant	0.0000	0.0000	VUS	3

PubMed evidence for LDLR

PubMed evidence selected to support annotation of cases.

Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction.

Authors Lee C, Cui Y, Song J, Li S, Zhang F, Wu M, Li L, Hu D, Chen H

Published 11 Apr 2019 PubMed ID 30971288

Whole-Genome Sequencing to Characterize Monogenic and Polygenic Contributions in Patients Hospitalized With Early-Onset Myocardial Infarction.

Authors Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, Lichtman JH, D'Onofrio G, Mattera J, Dreyer R, Spertus JA, Taylor KD, Psaty BM, Rich SS, Post W, Gupta N, Gabriel S, Lander E, Ida Chen YD, Talkowski ME, Rotter JI, Krumholz HM, Kathiresan S

Published 26 Mar 2019 PubMed ID 30586733

Application of expanded genetic analysis in the diagnosis of familial hypercholesterolemia in patients with very early-onset coronary artery disease. ☑

Authors Cao YX, Wu NQ, Sun D, Liu HH, Jin JL, Li S, Guo YL, Zhu CG, Gao Y, Dong QT, Liu G, Dong Q, Li JJ

Published 10 Dec 2018 PubMed ID 30526649

Genetic and secondary causes of severe HDL deficiency and cardiovascular disease.

Authors Geller AS, Polisecki EY, Diffenderfer MR, Asztalos BF, Karathanasis SK, Hegele RA, Schaefer EJ

Published 01 Dec 2018 PubMed ID 30333156

LDLR

Previous symbols None Alias symbols LDLCQ2

Panels and pathogenicity

Cases in CVA with a classified variant in LDLR split by gene panels. The current panel version and evidence for that gene in the panel is shown. Note: This may differ from the specific panel version used during Genomics England Tiering.

Panel name	PanelApp evidence	Pathogenic	Likely pathogenic	VUS	Likely benign	Benign
COVID-19 research (1.76) 亿	O Low	0	0	0	0	0
Childhood onset dystonia or chorea or related movement disorder (1.83) 🗹	O Low	0	0	0	0	0
Familial hypercholesterolaemia (1.27) 🖸	🔿 High	42	20	9	0	0
Familial hypercholesterolaemia - targeted panel (1.8) 더	🔿 High	0	0	0	0	0
Inborn errors of metabolism (2.101) 더	🔿 High	0	0	0	0	0
Severe Paediatric Disorders (1.65) 🖸	🔿 High	0	0	0	0	0
Undiagnosed metabolic disorders (1.447) 🖸	🔿 High	0	1	0	0	0

Authorize

Clinical Variant Ark

Base URL: /cva/ap cva/apl/swaggerison

The Clinical Variant Ark is a database to store clinically relevant variants and their association to phenotypes with fine grained detail for all the stages of interpretation in each specific case where the variant was observed. It intends to support both the interpretation exists for area disease families cases and cancer tunnour-commal pairs. Holding the results of several cases allows to so gargetate this data to provide a truth be of variant-finemorphy easociations and also detect and manage conflicts in the interpretation of similar cases and in the latest public knowledge. The main goal is to feedback information to the interpretation process to empower a virtuous circle in the interpretation of variants.

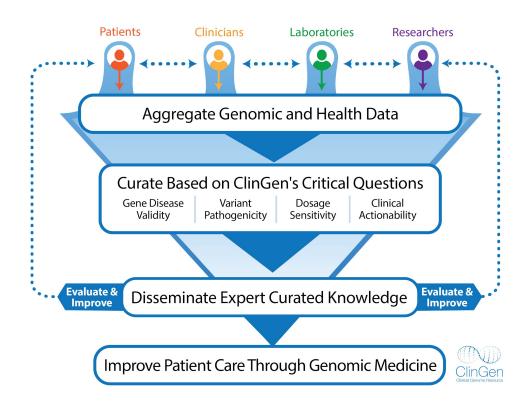
The secondary goal is to provide a platform that enables to curate variant-phenotype associations. It is of major importance to reduce friction in this manual curation process in stages such as evidence retrieval, variant classification and conflict detection.

The implementation is based on a MongoDB database and a Java backend that are exposed through a RESTAPI. This architecture allows to build applications agnostic of the underlying technology on top of this RESTAPI.

Authentication Tokens Cases Thank you Clinical Reports Data Intake Entities Exidences Exit Questionnaires Genes System Status Cancer Participants Pedigrees Report Events Transactions			
Cases Thank you Clinical Reports Data Intake Entities Exit Questionnaires Genes System Status Cancer Participants Pedigrees Report Events Transactions	Authentication Config		>
Clinical Reports Data Intake Entities Entities Exit Questionnaires Genes System Status Cancer Participants Pedigrees Report Events Transactions Variant Interpretation Log	Authentication Tokens	T I I	>
Clinical Reports Data Intake Entities Entities Exit Questionnaires Genes System Status Cancer Participants Pedigrees Report Events Transactions Variant Interpretation Log	Cases	I hank you	>
Entities Entities Evidences Exit Questionnaires Genes System Status Cancer Participants Pedigrees Report Events Transactions	Clinical Reports	,	>
Evidences Exit Questionnaires Genes System Status Cancer Participants Pedigrees Report Events Transactions	Data Intake		>
Exit Questionnaires Exit Questionnaires Genes System Status Cancer Participants Pedigrees Report Events Transactions Variant Interpretation Log	Entities		>
Genes System Status Cancer Participants Pedigrees Report Events Transactions Variant Interpretation Log	Evidences		>
System Status Cancer Participants Pedigrees Report Events Transactions Variant Interpretation Log	Exit Questionnaires		>
Cancer Participants Pedigrees Report Events Transactions Variant Interpretation Log	Genes		>
Pedigrees Report Events Transactions Variant Interpretation Log	System Status		>
Report Events Transactions Variant Interpretation Log	Cancer Participants		>
Transactions Variant Interpretation Log	Pedigrees		>
Variant Interpretation Log	Report Events		>
	Transactions		>
Variants	Variant Interpretation Log		>
	Variants		>

CVA Documentation

ClinGen Expert Panels: Development of disease-specific expert consensus to knowledge curation


Heidi L. Rehm, PhD, FACMG Chief Genomics Officer, Center for Genomic Medicine and Department of Medicine, MGH Medical Director, Broad Institute Clinical Research Sequencing Platform Professor of Pathology, MGH, BWH and HMS

The Clinical Genome Resource

www.clinicalgenome.org

Purpose: Create an authoritative central resource that defines the clinical relevance of genes and variants for use in precision medicine and research.

- Started September 2013
- Primarily funded by the NIH
 - 3 Core U41 Grants (NHGRI)
 - Disease-focused U24s (NIH)

1,557 investigators across 36 countries

Variant curation and classification

and membership

focus and gene list)

Step 1: Define WG

and plans

Submit completed Step 1

application materials

C. Address COI

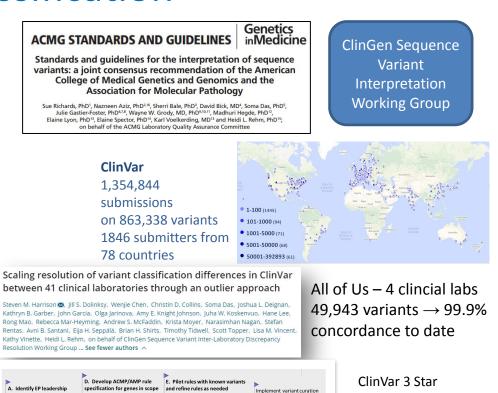
B. Define scope (disease

Review SVI guidance and other

Step 2: Develop Variant

Classification Rules

Submit completed Step 2


application materials and

present to the SVI WG

EP disease-specific rule

specification as examples

- Use of common standards
 - Terminology
 - Rules for variant classification
- Public sharing of variant classifications
 - Creates transparency and crowd-sources the work
- Inter-laboratory conflict resolution
- Engaging experts in systematic consensus driven interpretation of variants (Expert Panels)

and expert review

Ongoing reassessment and

discrepancy resolution

Step 4:

Implementation

ClinVar submissions

Status:

~12,000 variants

reviewed by expert panel

FDA Recognized Database

F. Format first ClinVar submission

Step 3: Pilot Rules

Submit complete EP application

for review and final approval

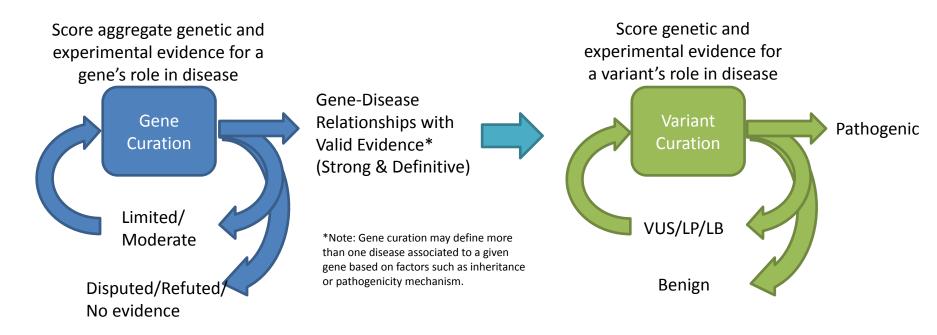
discrepancy resolution.

G. Define plans for ongoing variant

curation, review, and reanalysis and

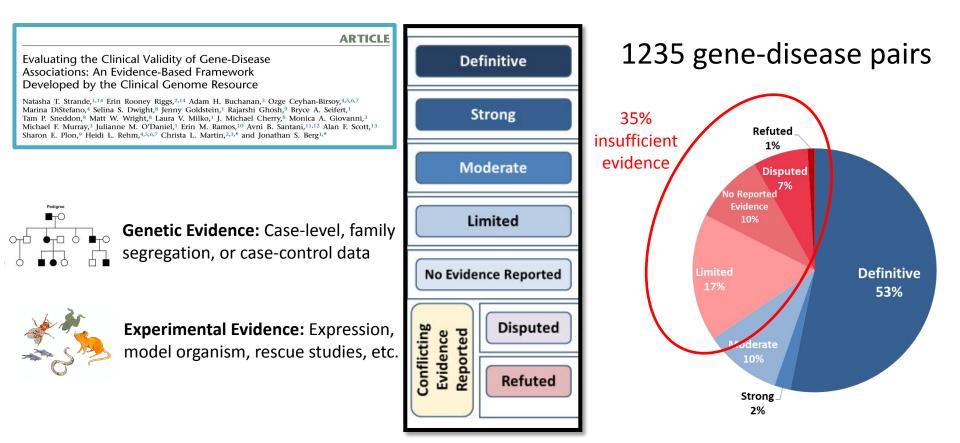
SVI final rule review

About ClinGen Expert Panels


ClinGen's Expert Panels are implementing the standards developed by our curation activities to improve genomics knowledge.

Gene Curation E	Clinical Domain W	orking Groups Variant Curation Expert Panels	Gene Curation Working Group	Dosage Sensitivity Working Group	Clinical Actionability Working Group		
Cardiovascular CDWG	Brugada Syndrome Gene Curation Cardiomyopathy Variant Curation Familial Hypercholesterolemia Var Familial Thoracic Aortic Aneurysm FBN1 Variant Curation Expert Pane Hypertrophic Cardiomyopathy Gen KCNQ1 Variant Curation Expert Pane	Expert Panel ant Curation Expert Panel (In Process) and Dissection Gene Curation Expert Panel I (In Process) ne Curation Expert Panel nel (In Process)		 13 Clinical Doman Workin Cardiovascular CDWG Hearing Loss CDWG Hemostasis/Thromb Hereditary Cancer CI Inborn Errors of Met Neurodevelopmenta RASopathy CDWG 	G osis CDWG DWG abolism CDWG		
Hearing Loss CDWG	Hearing Loss CDWG Hearing Loss Gene Curation Expert Panel Hearing Loss Variant Curation Expert Panel			 Neuromuscular CDWG Ocular CDWG Skeletal Disorders CDWG Kidney Disease CDWG 			
Hemostasis/Thrombosis CDWG	Coagulation Factor Deficiency Vari Hereditary Hemorrhagic Telangiec Platelet Disorder Variant Curation	tasia Variant Curation Expert Panel (in Process)		/G Panels			
Hereditary Cancer CDWG	Breast/Ovarian Cancer Gene Curat CDH1 Variant Curation Expert Pan			37 Variant Curation Expe			

ClinGen Expert Panels Span Many Time Zones!


ClinGen Core Curation Activities

<u>Tools & Resources:</u> ClinGen's Gene Curation Expert Panels & Gene Curation Interface Tools & Resources:

ClinGen's Variant Curation Expert Panels & Variant Curation Interface

G ClinGen's semi-quantitative framework to classify the strength of evidence for the role of genes in disease

ClinGen Variant Curation Expert Panel Approval Steps

ClinGen affiliated groups

F. Define plans for ongoing variant

the CDWG OC

 A. Identify EP leadership and membership B. Define scope (disease focus and gene list) C. Address COI 	 D. Specify ACMP/AMP rules for genes in scope Review SVI guidance and other EP disease-specific rule specification as examples 	E. Validate specified rules with known variants and refine as needed 10-12 P/LP per gene 10-12 B/LB per gene 10-12 VUS per gene	review and reanalysis and discrepancy resolution G. Provide example evidence summaries H. & I. Provide attestations for these sections	
Step 1: Define WG and plans	Step 2: Develop Variant Classification Rules	Step 3: Pilot Rules	Step 4: Final VCEP approval	
Submit completed Step 1 application materials	Submit completed Step 2 application materials and	Submit completed Step 3 application materials	Submit fully completed VCEP application and present to	

present to the SVI WG

Criteria requiring gene/disease specification

Gene-specific data, such as: PM1: Functional domains / hot spots PS3/BS3: Validated functional assays Disease specific data, such as:

BA1/BS1/BS2/PM2/BS4: MAF/Prevalence/penetrance PP4: Phenotype specificity PVS1: Pathogenicity mechanism

RASopathy VCEP: Final classification of >60% of RASopathy variants were impacted by the specified criteria. Labs reached **100%** concordance for discrepancies reassessed with RASopathy-specific criteria

	< Ber	^{ign} → ←	Pathogenic					
	Strong	Supporting	Supporting	Moderate	Strong	Very strong		
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4			
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gen where LOF is a known mechanism of disease PVS1		
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3			
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>			
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2			
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3				
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5					
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4					

Sequence Variant Interpretation

The goal of the Sequence Variant Interpretation Working Group (SVI WG) is to support the refinement and evolution of the ACMG/AMP Interpreting Sequence Variant Guidelines to develop quantitative approaches to variant interpretation.

SVI General Recommendations for Using ACMG/AMP Criteria

SVI provides general recommendations for using the ACMG/AMP criteria to improve consistency in usage and transparency in classification rationale.

- Guidance on how to rename criteria codes when strength of evidence is modified
- BA1: Updated Recommendation for the ACMG/AMP Stand Alone Pathogenicity Criterion for Variant Classification
 - BA1 Exception List (July 2018)
 - BA1 Exception List Nomination Form
- PVS1: Recommendations for Interpreting the Loss of Function PVS1 ACMG/AMP Variant Criteria
- PS2/PM6: Recommendation for de novo PS2 and PM6 ACMG/AMP criteria (Version 1.0)
- PS3/BS3: Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework
- PM3: Recommendation for in trans Criterion PM3 (Version 1.0)
- PP5/BP6: Recommendation for reputable source PP5 and BP6 ACMG/AMP criteria

SVI Approved Expert Panel Specified ACMG/AMP Variant Interpretation Guidelines

General SVI Publications

Recommendations for interpreting the loss of DUCA ACHICIANAD

https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation

ClinGen's RASopathy Expert Panel consensus methods for variant interpretation

Bruce D. Gelb, MD¹, Hélène Cavé, PharmD, PhD², Mitchell W. Dillon, MS³, Karen W. Gripp, MD⁴, Jennifer A. Lee, PhD⁵, Heather Mason-Suares, PhD⁶, Katherine A. Rauen, MD, PhD⁷ Bradley Williams, MS⁸, Martin Zenker, MD⁹, Lisa M, Vincent, PhD⁸ and for the ClinGen RASopathy Working Group

Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen's Inherited Cardiomyopathy Expert Panel

Melissa A. Kelly, MS¹, Colleen Caleshu, MS², Ana Morales, MS³, Jillian Buchan, PhD¹, Zena Wolf, PhD¹, Steven M. Harrison, PhD¹, Stuart Cook, MD⁴, Mitchell W. Dillon, MS¹, John Garcia, PhD⁵, Eden Haverfield, PhD³, Jan DL Jongbleed, PhD⁵, Daniela Macaya, PhD⁷, Anjun Marrai, PhD⁸, Kate Orland, MS⁹, Gabriele Richard, MD⁷, Katherine Spoonamore, MS¹⁹, Matthew Thomas, MS¹¹, Kate Thomson, BS^{12,13}, Lia, W. Vincent, PhD¹, Roddy Waldh, PhD¹⁴, Hugh Watkins, MD PhD¹³, Nicola Whiffin, PhD^{5,14}, Jodie Ingles, PhD¹⁵, J. Peter van Tintelen, MD PhD¹⁶, Christopher Semsarian, MBBS PhD¹⁵, James S. Ware, PhD MRCP^{6,14}, Ray Hershberger, MD³ and Birgit Funke, PhD^{1,17,18}, for the ClinGen Cardiovascular Clinical Domain Working Group¹⁹

Gene-specific criteria for PTEN variant curation: **Recommendations from the ClinGen PTEN Expert Panel**

Jessica L. Mester¹ Raiarshi Ghosh² Tina Pesaran³ Robert Huether⁴ Rachid Karam³ Kathleen S. Hruska¹ Helio A. Costa⁵ Katherine Lachlan^{6,7} Joanne Ngeow⁸ Jill Barnholtz-Sloan^{9,10} Kaitlin Sesock¹¹ Felicia Hernandez³ Liying Zhang¹² | Laura Milko¹³ | Sharon E. Plon² | Madhuri Hegde^{14,15}* Charis Eng^{9,10,16+}

Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss

Andrea M. Oza^{1,2} 🕕 | Marina T. DiStefano^{1,3} | Sarah E. Hemphill¹ | Brandon J. Cushman¹ Andrew R. Grant¹ Rebecca K. Siegert¹ Jun Shen^{1,3,4} Alex Chapin⁵ Nicole J. Boczek⁶ Lisa A. Schimmenti⁷ Jaclyn B. Murry¹ Linda Hasadsri⁶ Kiyomitsu Nara⁸ Margaret Kenna^{2,3} Kevin T. Booth^{9,10} Hela Azaiez⁹ Andrew Griffith¹¹ Karen B. Avraham¹² Hannie Kremer¹³ Heidi L. Rehm^{1,3,14,15} [] | Sami S. Amr^{1,3,4} [] | Ahmad N. Abou Tayoun^{16,17} [] on behalf of the ClinGen Hearing Loss Clinical Domain Working Group

Unique aspects of sequence variant interpretation for inborn errors of metabolism (IEM): The ClinGen IEM Working Group and the Phenylalanine Hydroxylase Gene

Diane B. Zastrow^{1,2} Heather Baudet³ Wei Shen^{4,11} Yue Si⁶ Meredith A. Weaver⁷ Angela M. Lager⁸ Jixia Liu⁹ Rachel Mangels² Selina S. Dwight² | Matt W. Wright² | Steven F. Dobrowolski¹⁰ | Karen Eilbeck¹¹ Gregory M. Enns² Annette Feigenbaum¹² Uta Lichter-Konecki¹³ | Elaine Lyon^{4,11} | Marzia Pasquali^{4,11} | Michael Watson⁷ | Nenad Blau¹⁴ Robert D. Steiner^{9,15} William J. Craigen¹⁶ Rong Mao^{4,11} for the ClinGen Inborn Errors of Metabolism Working Group

Chairs

Leslie G. Biesecker MD Steven Harrison, PhD

Coordinators

Please contact a coordinator if you have questions.

Danielle Azzariti, MS, CGC dazzarit@broadinstitute.org

ClinGen VCEPs do not review all variants!

VCEPs priorities include:

1. Resolving discrepancies

2. Classifying the most prevalent pathogenic variants

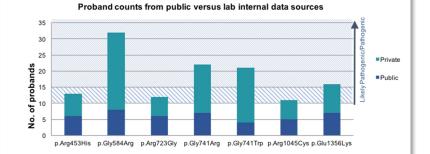
3. Examining variants that have been observed in multiple cases through which combining data can move them from VUS or LP to Pathogenic or Benign

Expert Panel Submissions Can Resolve Differences in Classification in ClinVar

NM_004004.6(GJB2):c.101T>C (p.Met34Thr)

Interpretation:	Pathogenic	
Review status:	🚖 🚖 🛣 reviewed by expert pan	el FDA RECOGNIZED DATABASE
Submissions:	33 (Most recent: Nov 26, 2020)	No. of a second s
Last evaluated:	Jun 24, 2019	
Accession:	VCV000017000.25	
Variation ID:	17000	22 Pathogenic
Description:	single nucleotide variant	4 Likely Pathogenic
		2 VUS

2 Likely Benign


2 Benign

Practice Guideline	***
Expert Panel (EP) Submitter	***
Multiple Non-EP Submitters Agree	**
Single Non-EP Submitter	-
Multiple Non-EP Submitters Disagree	×
No Assertion Criteria Submitter(s) Only	0 Stars

Expert panels also combine evidence to reclassify VUSs

NM_000257.4(MYH7):c.2678C>T (p.Ala893Val) Interpretation: Likely pathogenic Review status: ★★★☆ reviewed by expert panel FDA RECOGNIZED DATABASE Submissions: 4 (Most recent: Jun 3, 2020) Last evaluated: Dec 15, 2016 Accession: VCV000177763.5 Variation ID: 177763 Description: single nucleotide variant

Cardiomyopathy Expert Panel

Clinical significance (Last evaluated)	Review status (Assertion method)	Collection method	Condition(s) (Mode of inheritance)	Origin	Citations	Submitter - Study name	Submission accession
Likely pathogenic (Dec 15, 2016)	reviewed by expert panel <u>ACMG variant</u> classification (MYH7)	curation	Primary dilated cardiomyopathy (Autosomal dominant inheritance) [<u>MedGen Orphanet]</u>	germline		<u>ClinGen Inherited Cardiomyopathy</u> Expert Panel	SCV000564435.2
Uncertain significance (Jan 21, 2016)	criteria provided, single submitter <u>LMM Criteria</u>	clinical testing	not specified [<u>MedGen]</u>	germline	PubMed (2) [See all records that cite these PMIDs]	Laboratory for Molecular Medicine,Partners HealthCare Personalized Medicine	SCV000204046.3
Uncertain significance (Oct 24, 2016)	criteria provided, single submitter <u>GeneDx Variant</u> <u>Classification</u> (06012015)	clinical testing	not specified [<u>MedGen]</u>	germline		<u>GeneDx</u>	SCV000208493.9

ClinGen VCEP Classified Variants in ClinVar Resolve Conflicts 11,674 Expert Classified Variants in ClinVar

RASopathy Hearing Loss Myeloid Mali

Lysosomal St Cardiovascu

	CDH1	Hearing Loss	Cardio-m yopathy	Myeloid Malignancy	PAH	PTEN	RASop athy	Total
Total Submission	50	77	102	52	158	111	254	804
P/LP vs VUS/LB/B overwritten	5	19	14	3	10	18	10	79
VUS vs LB/B overwritten	12	14	12	2	2	10	52	104

PAH VCEP 2 489	14	4	117	145	209	
PTEN VCEP 2 145	10	18	42	37	38	
CDH1 VCEP 229	48	26	32	55	68	
TP53 VCEP 2 58	6	17	11	10	14	
ASopathy VCEP 🔀 329	128	61	38	19	83	
aring Loss VCEP 🗹 169	26	23	53	41	26	
veloid Maligna 🗗 145	52	15	28	25	25	
Platelet Disord 🗗 2					2	
sosomal Stora 🗹 138	11	2	16	43	66	
ardiovascular 🗗 🚺	46	1	16	18	20	

To track ClinGen FDA-recognized submissions go

to:

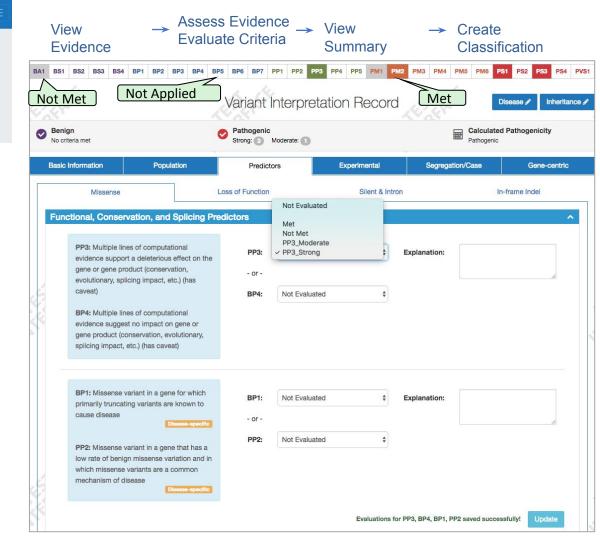
https://erepo.clinicalgenome.org/evrepo/

VCEP Classifications in ClinVar

Interpretation:	Pat	hogenic		Θ
Review status: Submissions: Last evaluated: Accession: Variation ID: Description:	2 (M Sep VCV 506	lost recent: Mar 17, 2018 000506273.2		ED DATABASE
ubmitted inte	rpretations a	and evidence	1	
Interpretation (Last evaluated)	Review status (Assertion criteria)	Condition (Inheritance)	Submitter	Supporting information (See all)
Pathogenic (Sep 17, 2018)	reviewed by expert panel (ClinGen HL ACMG Specifications v1) Method: curation	Usher syndrome (Autosomal recessive inheritance) Allele origin: germline	ClinGen Hearing Loss Variant Curation Expert Panel, FDA RECOGNIZED DATABASE Accession: SCV000840528.3 Submitted: (Feb 27, 2019)	Evidence details Other databases https://erepo.clinicalgenome.o Comment: The p.Tyr3747X variant in USH2A is predicted to cause a premature stop codon in biologically-relevant-exon 58/72 that leads to a truncated or abs protein in a gene in which loss-of-function is an established mechanism (PVS1). The allele frequency of the p.Tyr3747X variant in the Ush2A gene is 0.017% (4/24020) of African chromosomes by the Genome Aggregation Database (http://gnomad.broadinstitute.org), which is a low enough frequency to award PM2_Supporting based on the thresholds defined by ClinGen Hearing Loss Expert Panel for autosomal recessive hearing loss (PM2_Supporting). This variant has been detected in 1 patient with hearin loss in trans with a suspected pathogenic variant (PM3_Supporting, Parth LMM internal data SCV000713838.1). In summary, this variant meets criter

(less)

to be classified as pathogenic for autosomal recessive Usher syndrome based on the ACMG/AMP criteria applied: PVS1, PM2_Supporting, PM3_Supporting. View structured evidence in ClinGen's Evidence Repository


ClinGen Variant & Gene Curation

Variant Curation is available for public use. To register, create an account via "Login", and then contact our helpdesk at clingen-helpdesk@lists.stanford.edu.

Gene Curation is currently restricted to ClinGen curators. To collaborate on gene curation contact clingen@clinicalgenome.org

ClinGen Variant Curation Interface (VCI)

Used by VCEPs, laboratories and individuals to facilitate the classification of variants

Opportunities to get Involved in ClinGen

https://clinicalgenome.org/start/

Want to get involved in ClinGen activities?

We look forward to collaborating with you! Here are some ways to participate:

- Sign up for our Mailing List
 Sign up to get ClinGen news and updates delivered to your inbox.
- Attend ClinGen Events
 Find when and where ClinGen is exhibiting and hosting events.
- Volunteer to Curate Interested in volunteering to curate for ClinGen? Please complete this brief survey
- Join the ClinVar Community Call Join a monthly call bringing together Clinvar users to discuss topics related to ClinVar.
- Share Your Data Learn how clinicians, laboratories and patients can share their data.
- Part IV Practice Improvement
 Learn about a module towards Part IV Practive Improvement for clinical
 laboratory geneticists.

www.clinicalgenome.org/volunteer

If you want to volunteer as a biocurator and learn gene and variant curation, fill out our survey: If you have specific expertise and would like to join one of our Gene or Variant Curation Expert Panels as an expert:

About ClinGen Expert Panels

ClinGen's Expert Panels are implementing the standards developed by our curation activities to improve genomics knowledge.

Clinical Domain Working Groups		Gene Curation	Dosage Sensitivity	Clinical Actionability
Gene Curation Expert Panels Variant Curation Expert Panels		Working Group	Working Group	Working Group

One specific goal of ClinGen is to develop teams of experts in different clinical domains to evaluate the clinical validity of gene-disease relationships and pathogenicity of individual genetic variants.

About Gene Curation Expert Panels

Gene Curation Expert Panels implement an approved process of evaluating the strength of evidence supporting or refuting a claim that variation in a particular gene causes a particular disease.

Interested in volunteering to curate for ClinGen? Please take this brief survey to tell us more about your interests, expertise, and desired level of involvement so we can pair you with an appropriate curation activity and/or Expert Panel.

Interested in starting an Expert Panel? See our guidelines for applying for Gene Curation Expert Panel Status.

About Variant Curation Expert Panels

Variant Curation Expert Panels evaluate evidence to classify a genomic variant on a spectrum from pathogenic to benign with respect to a particular disease and inheritance pattern.

Interested in volunteering to curate for ClinGen? Please take this brief survey to tell us more about your interests, expertise, and desired level of involvement so we can pair you with an appropriate curation activity and/or Expert Panel.

Interested in starting an Expert Panel? See our guidelines for applying for Variant Curation Expert Panel Status.

For a full list of Expert Panels, visit this page:

https://clinicalgenome.org/ working-groups/clinical-domain/

Clinical Genome Resource

Steering Committee (*Pls)

Jonathan Berg, UNC* Adam Buchanan, Geisinger Carlos Bustamante, Stanford Andy Freedman, NCI Katrina Goddard, Kaiser* Steven Harrison, Broad Brandi Kattman, NCBI Melissa Landrum, NCBI Christa Lese Martin, Geisinger* Aleksandar Milosavljevic, Baylor Joannella Morales, NHGRI Kelly Ormond, Stanford Sharon Plon, Baylor* Heidi Rehm, Broad/MGH* Erin Ramos, NHGRI Erin Riggs, Geisinger Marc Williams, Geisinger* Matt Wright, Stanford

<u>Consortium Members:</u> >1,557 people from >36 countries <u>Funding</u>: NIH/NHGRI U41HG006834, U41HG009649, U41HG009650, NIH/NICHD: U24HD093483, U24HD093486, U24HD093487

www.clinicalgenome.org

@ClinGenResource

External Scientific Panel

ClinGen Steering Committee

Core Standards & Oversight

- Clinical Domain Working Group Oversight
- Gene Curation
- Lumping & Splitting
- Sequence Variant Interpretation
- CNV Interpretation
- Cancer Variant Interpretation
- Pharmacogenomics
- Low Penetrance/Risk Allele
- Complex Disease
- Ancestry & Diversity
- Data Access, Protection, & Confidentiality

Applications & Infrastructure

- Data Platform
- ClinVar
- Application Stakeholder Feedback
- Electronic Health Record

Expert Curation

- **Clinical Domain Working Groups**
 - Gene Curation Expert Panels
 - Variant Curation Expert Panels
- Dosage Sensitivity
- Actionability

Education, Engagement and Outreach

- Education, Coordination & Training Biocurator
- **Community Curation**
- Stakeholder Partnership

GENOMICS IN HEALTH IMPLEMENTATION FORUM

Day 1 Closing

Kathryn North and Mark Caulfield